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Abstract. For the theoretical study of Šolc filters, used in particular in solar 

observatories or coronagraphs, we emphasize the interest of the polarization 

representation using the complex plane. We show that, with some approximations 

allowed by the small angle of rotation between two successive filter plates, the 

traditional but highly computational study of basic Šolc filters is much shorter, and 

that a new path for the study of less basic Šolc filters is offered by the technique of 

calculation in the complex plane. This provides a stronger mathematical basis for 

previous research into tunable or apodising Šolc filters – which is welcome as the 

relative height of the secondary maxima just near the transmission peaks of basic 

Šolc filters is 11%. 
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1. Introduction 

 

Birefringent filters, which include those of Lyot and Šolc, consist of polarizers (or analysers) and 

a fairly large number N of retardation plates of a birefringent material, cut parallel to its optic axis 

[1]. They have a spectral transmission curve showing a sequence of very fine peaks [2-5], and 

this is of great interest for solar observations and coronagraphy [6-9], for telecommunications 

[10], for sensors [11], etc. – for more details, see the introduction and the references of [1]. 

Compared to Lyot filters, Šolc filters have the advantage of using only one polarizer before the 

stack, one analyser at the end and N identical plates (whence they are simpler and more luminous 

[5]), but, in their basic forms, they suffer from secondary maxima three times higher than those 

of Lyot filters just next to the spectral transmission peaks; hence the compelling need of an 

apodisation [12], i.e. a reduction of the secondary maxima – a classical task in image formation 

and in spectroscopy [13]. 

The analytical theory of Šolc filters is computationally much heavier than that of Lyot filters. 

For both basic models of Šolc filters, a rigorous analytical expression of their spectral 
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transmittance can still be obtained. This becomes much more difficult, if not impossible, for 

apodising Šolc filters, so most works proceed with numerical studies. A heuristic way of 

identifying the physical ideas governing these apodising Šolc filters has been presented by Fredga 

and Högbom [14], and exploited by Leroy [15], but it still involves many computational 

difficulties. Therefore, in this article, we present a novel approach to the theory of Šolc filters, 

which lends itself more easily to the study of apodising filters. 

In order to go beyond the basic study of polarization problems, three approaches are open [16-

18] in the case of non-depolarizing and linear devices: (i) a matrix approach, where polarization 

is represented by a vector, and the action of an optical component by multiplication by a JONES 

matrix, which for non-dichroic devices is proportional to a matrix of the SU(2) unitary group; 

(ii) a geometrical approach, where a polarization is represented by a point of the Poincaré sphere 

(), and the action of a retarder plate by a rotation of () on itself, or by an element of the rotation 

group
3SO ( ) ; (iii) an algebraic approach, where a perfect polarization is represented by a point 

of the complex plane, and the action of a linear non-depolarizing device by a complex 

homography. Although in practice these three approaches lead to very different calculations, their 

respective fecundities are fundamentally linked, because of the group morphisms of SU(2) 

towards 
3SO ( ) , and of 

3SO ( )  towards the homography group – the latter resulting in the 

stereographic projection of (), the pole of this projection being the point of () representing the 

linear polarization parallel to Oy [17]. 

As regards the study of Šolc filters, most of the works use the first or second approach (see 

e.g. [4,19]); it seems that the third approach has hardly been used. This is why, with this third 

approach, we return to the study of these filters, and in particular to the question of their 

apodisation and their tuning. 

But before tackling the issue, a useful preliminary will introduce the treatment of polarisation 

in the complex plane by showing how, in this way, we obtain the classical results for the two 

basic models of Šolc filters – the fan filter and the folded filter [1-4,20]. Both are made up of N 

identical retardation plates, normal to Oz, each producing a retardation (phase shift) 2 of the 

electric field component E (of a monochromatic beam passing through the filter) on its slow axis 

relative to the component on its fast axis. 

For each of these filters, we consider the effect of light propagating through them in the 

direction of Oz; the axes to be considered for all the plates are parallel to the xOy plane. In order 

to obtain the expression of the spectral transmittance T of the filter (which depends on the 

orientations of the polarizer and of the analyser), according to the third approach we use the 

correspondence [16-18] between, on the one hand, the polarization of a spectral component 

(proportional to 
iωte

) of the electric field, which is written 
x yE E x yE u u using the direct 

orthonormal basis  ( ) : , , x y zu u uB  (the symbol :  indicating a notation or a definition), and 

on the other hand a point of affix : y xZ E E  in the complex plane, extended (i.e. compactified 

by adding infinity, in order to be able to take into account the linear polarisation parallel to Oy). 

The regular arrangement of the successive plates brings back the essence of the problem to the 

study of a recurrent sequence of complex numbers. 

In a first and a second step, we shall revisit, using the complex plane, the study of the fan Šolc 

filter, then the folded Šolc filter. We use each of these classical cases, for which a rigorous 

expression of T is available, as test benches for an approximate calculation allowing us to deal 

with less classical and more difficult cases. Finally, in a third step, we shall derive an approximate 

expression of T for less classical Šolc filters, using this technique of study and approximation in 

the complex plane – which has apparently never been used before for Šolc filters, and which 

supports but also refines the heuristic presentation of Fredga and Högbom [14] while avoiding the 

computational difficulties encountered by Leroy [15]. 
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2. Basic fan Šolc filter 

 

In this filter, the azimuth (with respect to Ox) of the slow axis Lj of the retardation plate number 

n is 
nθ nθ  defined only modulo see figure 1). 

 

Figure 1. Orientations of the slow axes Ln of the N plates of the fan filter and of 

the polarizer axis P. In the usual configuration the axes of the polarizer and of the 

analyser A are parallel to each other ( =  mod. ), which explains why A is not 

represented here. 

 

2.1. Relationship between incident and emergent polarizations for the plate stack 

 

To begin with, we look at the effect of the passage of light through L1, of incident polarization 

characterised by Z with the basis ( )B . For this purpose, we introduce the direct orthonormal 

basis  ( ) : , , B x y zu u u1  such that its first and second vector are respectively directed 

by the slow and fast axes of L1. For light incident on L1, the change of basis from ( )B  to ( )B 1  

changes Z into 
tan

tan

Z θ

Z θ



1
, which must then be multiplied by 

2: i γu e , to account for 

the passage of the light through L1. Let us note that to the first order in , we have 

 2 2tan
1

1 tan

i γ Z θ
e u Z Z θ

Z θ

 
   
 

. 

Then, with a fan filter, the complex number characterising the perfect polarization of the light 

emerging from plate number n is therefore – in the direct orthonormal basis ( )nB  such that its 

first and second vectors are respectively directed by the slow and fast axes of Ln – given by the 

recurrence relation 

1

1

tan

1 tan

n
n

n

Z θ
Z u

Z θ









. (1) 

In practice, the angle between the slow axes of two successive plates is always small, so the first-

order approximation in  is correct when 
1 1nZ θ  . Under this condition, it gives 

 2

1 11n n nZ u Z Z θ 
   
 

. (2) 

L
N - 1

 
L

N
 

O x 

P 
L1 

 

L2 
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By recurrence, it is easy to check that 

  

 

2 1 2

0 0

1
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1
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Z u Z u u u u Z θ

u u
u Z u Z θ

u






     


  



. (3) 

where 
0Z  corresponds, in ( )B , to the perfect polarization of the light incident on L1. 

The rigorous expression of 
nZ  as a function of 

0Z  is longer to obtain. It requires to solve a 

homographic sequence [1]. We can check (see appendix A) that the rigorous expression (A2) is 

in agreement, to first order in , with the approximate expression (3) for  ,γ π 0  (where 

1u  ).  Using this approach, in section 4, we will consider – to first order in  – more difficult 

practical cases, such as those of apodising Šolc filters, for which there is no rigorous solution. 

Nevertheless, we must keep in mind a practical problem: the domain of  on which this first order 

approximation is correct depends on , and the values of  corresponding to the usual 

configuration of the filters (see subsection 3.2) do not allow using the approximate result (3) to 

calculate 
NZ  when  is too close to the bounds of  ,π0 . 

 

2.2. Transmittance in the usual configuration 

 

Let us consider a perfect analyser A which transmits without absorption the light whose complex 

electric field is proportional to a  of components  , ,0a ax y  in ( )B ; the perfect polarization of 

the latter being characterised by : y xAZ a a . With A, the spectral transmittance T for a light of 

perfect polarization characterised by Z in the orthonormal basis ( )B  reads 

   

2
*

2 2

1

1 1

A

A

Z Z
T

Z Z




 

 (4) 

according to a generalized Malus’ law in the complex plane [1]. This result is clearly related to 

the fact that the polarizations (not necessarily linear) associated with Z and 
AZ  are orthogonal if 

and only if 
* 1AZ Z    [16-18]. 

With a basic fan Šolc filter, the axis direction of its analyser A being given by  β  xu ,n , and 

when the linear polarization delivered by its polarizer is characterized by tanZ α0 , the 

transmittance T is obtained using the expression (A2) for Z – with n = N – and the expression (4) 

where we express 
AZ  using the same basis as for 

NZ , so the basis ( )NB ; then 

tan ( )AZ β Nθ  . We have already shown [1] that, with the variable 

 : arccos cos cosχ γ θ , (5) 

 this method gives the classical expression [4,20] 
2

tan
sin ( )

tan

θ
T Nχ

χ

 
  
 

 (6) 

in the usual configuration where 2α θ β   and ( )
2

π
Nθ mπ m   ; in this case 

0 tan
2

θ
Z   , and tan cot

2 2 2
A

θ π θ
Z mπ

 
     

 
. Considering the length of the 

corresponding calculations [1], it is helpful to examine how they are shortened to first order in . 

Thanks to relation (3), for  ,γ π 0  except too close to the bounds, we can write 
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 2 2

0 0

i Nγ

N N NZ e Z A B Z θ    (7) 

with 

 
2

2 12

2

1

1

i Nγ
i N γi γ

N Ni γ

e
A e e B

e







  


. (8) 

For the usual configuration, 
0 2 1 AZ θ Z   , and the term 2

0NB Z θ  is of order 3 in  . To 

first order, it remains 

 

 
 
 

22 12 2
2

2

2

22

2 2 1 2

cos

2 sin

i Nγ i γ i γ i γi N γi Nγ i γ
i Nγ

N N i γ i γ i γ

i Nγ i γ

e e e eθ e e e
Z e A θ θ θ

e e e

e γ e
θ

i γ

    


 

 

  
   

 




  (9) 

Moreover, with 
0Z  of order 1 in θ , we have  

2
1 1NZ   for  ,γ π 0 , except too close to the 

bounds. This exception is here due to the fact that, when  tends to 0 modulo , the limit of 
2

1 NZ  is notably greater than unity.  Other approximation: 
2 2

1 A AZ Z  , because 
AZ  is 

very large (since 
0 1 AZ Z  is of first order). With these two last approximations, the 

denominator of the expression (4) of T reads 

     
22 2

1 1 2N AZ Z θ


   . (10) 

Furthermore, and again for  ,γ π 0  except too close to the bounds, 

2 2
* cos 1 sin ( )

1 1 2
sin tan tan

i Nγ i γ i Nγ
i Nγ

N A

e γ e e Nγ
Z Z e

i γ i γ γ

  
 

     , (11) 

then we finally get 
2

sin ( )

tan

Nγ
T θ

γ

 
  
 

. (12) 

This result is well in agreement with expression (6) in the first order approximation in , except 

(as announced above) if  tends to zero (modulo ). The above approximations do not allow 

studying transmission peaks. But the secondary maximum – n° j (small with respect to N in 

absolute value) from the transmission peak for γ  0  – occurs  when 
2 1

2

j
Nγ π


  , i.e. 

 2 1γ j θ   for the usual case where m = 0. With these values the expression (12) gives 

  
2

2 1
tan 2 1

2 1
T θ j θ

j

 
         

 (13) 

thus 11.1%T   for 1j   and 0m  . Using the rigorous expression (6) Fredga & Högbom 

[14] give 11.6%, so our approximation appears to be valid to study the quality of apodisation by 

relying on the value of the two secondary maxima closest to transmission peaks when 0m  . 

As the calculations carried out in this way are very shortened, this method seems promising. We 

will go on with it. 
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3. Study, to first order, of the transmission through a basic folded Šolc filter 

 

In this filter model, the angle (defined only modulo ) from Ox towards the slow axis of the 

retardation plate number j is  
1

1 2
n

nθ θ


  . Orientations of the successive plates are therefore 

alternating, as they are successively symmetrical with respect to Ox (figure 2), hence the name 

“folded Šolc filter”. 

 

Let us limit our study here to the case of such a filter with an even number of plates 

2N Q . This will allow us to compare our result with another already published [20]. 

 

 
 

Figure 2. Orientations of the slow axes Ln of the N plates of the folded filter, of the 

axes of the polarizer P and of the analyser A. 
 

 

Let us characterize the polarization incident on L1 by the number 0Z  defined with the 

components of E  in 2( )B , and not in ( )B as in section 3. This gives here
0 tan

2

θ
Z α

 
  

 
 . To 

find the polarization of the light emerging from L2Q, let us iterate Q times the following sequence 

of calculations: 

 transform Z by the change of basis from 2( )B  to 1( )B , and multiply by u (in order to 

know in ( )1B  the characteristics of the polarization of the light emerging from a plate of odd 

number), which gives (to first order for the remainder of this article) 

 21Z u Z Z θ    
 

 ; (14) 

 transform Z  by the change of basis from 1( )B  to 2( )B , and multiply by u (in order to 

know in 2( )B  the characteristics of the polarization of the light emerging from the next plate), 

which gives 

     2 2 2 2 3 21Z u Z Z θ u Z u u u u Z θ            
   

. (15) 

In 2( )B , the characteristics of the polarization of the light emerging from the last plate of the 

stack are therefore given by 
QZ  deduced from the following recurrence relation: 

  2 2 2

1 11k k kZ u Z u u u Z θ      (16) 

(here the subscript k no longer corresponds to one plate, but to a pair of plates). By recurrence, it 

is easy to check that 

L1, L3, ... 

L2, L4, ... LN 

O 
x 

P 
 

A 

–   / 2 

 



7 

 

    2 2 3 2 2 1 2 2 2

0 0 0 0... 1 :k k k k

k k kZ u Z u u u u u Z θ u Z A B Z θ             (17) 

with 
2 1

1 2

1

k
k

k k

u u
A u B

u




   


. (18) 

For the usual configuration  = 0 and 2β π  , therefore 
0 2Z θ  and, still with the basis 

2( )B , 2AZ θ  . Then using the result of (17)-(18) we find 

 

 
 
 

22 12 2
2

2

2

22

2 2 1 2

sin

2cos

i Nγ i γ i γ i γi N γi Nγ i γ
i Nγ

Q Q i γ i γ i γ

i Nγ i γ

e e e eθ e e e
Z e A θ θ θ

e e e

e i γ e
θ

γ

    


 

 

  
   

 




  (19) 

Moreover, 

   

2

2 2

1

21 1Q A

θ

Z Z

 
  
  

 (20) 

and 
2 2

* sin 1 sin ( )
1 1 2

cos cot cot

i Nγ i γ i Nγ
i Nγ

Q A

e i γ e e Nγ
Z Z i e

γ γ γ

  
 

       (21) 

from which one finally gets 
2

2 sin
2sin ( )

cot
tan

2

π
N γ

Nγ
T θ θ

πγ
γ

   
            

     
   

 (22) 

for N even. This result, which corresponds (by changing   into 
2

π
γ  ) to the result (12) obtained 

for the fan filter, is well in agreement with the expression (24) of [20] to the first-order 

approximation in . It necessarily gives 11 %T   for the secondary maxima closest to a principal 

maximum of T versus  on each side of it. As much as for the fan filter, an apodisation for the 

folded filter will be welcome! 

Again, the first-order study of this section is much shorter than the rigorous study – see for example 

section 3 of [20]. 

 

4. Apodising and tuning Šolc filters 

 

In order to obtain apodising filters, Šolc himself proposed [12] to make the angle, between the 

slow axes of the plates number n and n + 1 of a fan filter, variable with n. Here we study the effect 

of this variation, and find the general idea already perceived by Fredga and Högbom [14], 

benefitting from the complex plane treatment of polarization. Considering the simple 

correspondence between the folded and fan filters when used in classical configurations, we will 

only consider the latter in this last section. 

 

To this end, let us consider 
1:n n nφ θ θ   (with 

0 : 0θ  ), and continue the reasoning of 

subsection 3.1. For the light incident on Ln1
, the change of basis from ( )nB  to 1( )nB  – with 
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( ) : ( )0B B  – changes 
nZ  into  21n n nZ Z φ  , then the passage of the light through Ln1

 

gives the polarization characterized by 

 2

1 1n n n nZ u Z Z φ
   
 

. (23) 

Proceeding by recurrence as in section 3, it is easy to check that, always to total order 1 with 

respect to all the 
nφ , 

2

0 0

N

N N NZ u Z C D Z   . (24) 

where
ND is of total order 1, and also 

NC  which reads 

 1 ( 1)

0 1 1... :N N N

N N NC u φ φ u φ u u φ  

        (25) 

where 
2 ( 1) 2

0 1 1(2 ) ...i γ i N γ

N Nφ γ φ φ e φ e 

     (26) 

is, as a function of 2 , the discrete (and therefore 2 -periodic) Fourier transform of sequence 

nφ . Its link with the continuous Fourier transform is well known: samples of the continuous 

Fourier transform, periodized (its period being the sampling frequency), of an initial function are 

given by the discrete Fourier transform of the corresponding function periodized – its period being 

the sampling length [21]. 

 

For the usual configuration we have 
0 1 AZ Z   real: the corresponding linear polarizations 

are orthogonal modulo a rotation of angle 
1

0

N

n N

n

φ θ




 , whatever 
Nθ  – not necessarily 

2

π
mπ  

(ditto for Nθ  in subsection 3.2); then 

 * 2 21 1i Nγ i Nγ

N A A NZ Z e Z φ e     . (27) 

Like in subsection 3.2, for  ,γ π 0  except too close to the bounds, and with 
0Z  of order 1 in 

1θ , we will approximate    2 2
1 1N AZ Z   by  

2
2θ


, for reasons similar to those exposed 

just before equation (10). We therefore come to an important relation: for an apodising Šolc filter, 

in the conditions above, 

 
22 22 2

0(2 ) 1 (2 ) 1 (2 )i Nγ i Nγ

A N A NT γ e Z φ γ Z Z e φ γ      . (28) 

In the usual configuration, for the basic case studied in section 3, where 
0 1 1... 2Nφ φ φ θ α     , 

we have  

( 1)sin ( )
(2 )

sin

i N γ

N

Nγ
φ γ θ e

γ

  and 
0 2Z α θ   ; (29) 

this simple expression of (2 )Nφ γ  classically appears in the theory of gratings. Then it is easy to 

check (see appendix B) that the result deduced from the approximate expression (28) is in 

agreement with (12). Fredga and Högbom [14] show transmission curves for many sequences 
nφ

. 

The approximation 
2

(2 ) (2 )NT γ φ γ  would be agreeable indeed! It is glimpsed at the end of 

section 4 and suggested in the beginning of section 5 of Fredga & Högbom [14]. It is correct if 

the conditions above (hence  not too close to 0 modulo ) and  2

0 1 (2 )i Nγ

NZ e φ γ   are 

satisfied – often, the latter requires  not too close to 2π  modulo . Fredga and Högbom missed 

the existence of such conditions on , which  allow using the expression 
2

(2 ) (2 )NT γ φ γ  for 

the first secondary maxima near the transmission peaks. Hence, this result is valuable to find 
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sequences 
nφ  giving interesting results regarding the apodisation – or, heuristically, the tuning 

[14] – of the transmission curve. 

 

 

5. Conclusion 

 

A new mathematical approach to the question of the apodisation of Šolc filters is offered by the 

representation of polarization in the complex plane. Taking into account the small angle of rotation between 

two successive filter plates, not only is the traditional study of fan or folded Šolc filters made much shorter, 

but a more solid and theoretical basis is given to an approximate result on generalized Šolc filters: their 

transmittance, for the secondary maxima of transmission (near the peaks) that one wishes to reduce in 

apodising filters, is quasi-proportional to the square of the modulus of the discrete Fourier transform of  

sequence 
nφ . As already mentioned by Fredga and Högbom [14], this allows the design of multiple types 

of apodising filters, for example when the sequence of the 
nφ is triangular, or Gaussian, etc. Moreover, 

Fredga and Högbom [14] combine apodisation with tuning of the filter, by changing the 
nφ  into 

 cosnφ ωn : when  varies from 0 to 2π , the principal maxima gets progressively duplicated, and 

when  varies from 2π  to , the two progressively merge; the filter has been progressively changed from 

a fan filter into a folded filter. 
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Appendix A 

 

With the variable  defined by equation (5) we have shown [1] that  

 

 

 

sin cos( ) sin cos sin ( ) sin( ) sin

sin cos( ) sin cos sin ( ) sin( ) sin

i γ

n i γ

Z χ nχ γ θ i nχ nχ e θ
Z

χ nχ γ θ i nχ Z nχ e θ

   
   

0

0

. (A1) 

We can check that to first order in , we find the approximate expression (6) for 

 ,γ π 0 . Indeed, to this order χ γ  because cosθ 1  in relation (A1), therefore 

   sin cos( ) sin cos sin ( ) cos( ) sin ( ) sin sini nγχ nχ γ θ i nχ nγ i nγ γ e γ     (A2) 

and from the relationship (A1) we deduce that 

 

 

0

0

0 0

2 12 2

0 0

2
2 12 2 2

0 02

sin sin( )

sin sin( )

sin sin( ) sin( )
1

sin sin

sin( )

sin

1
1

1

i nγ i γ

n i nγ i γ

i nγ i γ i γ

i nγ i nγ

i n γi nγ i γ

i nγ

i nγ
i n γi nγ i γ

i γ

Z e γ nγ e θ
Z

e γ Z nγ e θ

Z e γ nγ e θ Z nγ e
θ

e γ e γ

nγ
Z e e Z e θ

e γ

e
Z e e Z e

e

 

 

  


  








 
  

 

   
 


  


θ 

 

  (A3) 

as expected from the relationship (3). 

 

 

Appendix B 

 
To test the coherence of the approximations given by equations (12) and (28)-(29), we 

begin with (28). Using the expressions of 
0Z  and (2 )Nφ γ  given by equation (29), we find 
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This result is in agreement with equation (12). 


