

Bases de l'optique géométrique

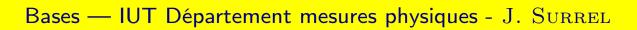
Joëlle Surrel

▶ To cite this version:

Joëlle Surrel. Bases de l'optique géométrique. Licence. 2006. sfo-00270686

HAL Id: sfo-00270686 https://hal-sfo.ccsd.cnrs.fr/sfo-00270686v1

Submitted on 22 Apr 2008


HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Bases

Table des matières

1	Indice de réfraction et chemin optique									
	1.1	Vitesse de la lumière	3							
	1.2	Indice de réfraction	3							
	1.3	Chemin optique	5							
2	Principe de Fermat									
	2.1	Énoncé	5							
	2.2	Conséquences directes	6							
3	Lois	de Descartes	6							

	3.1	Définitions	6							
	3.2	Lois relatives à la réflexion	7							
	3.3	Lois relatives à la réfraction	7							
4	Miro	oir plan	9							
5	Stigmatisme									
	5.1	Stigmatisme rigoureux	10							
	5.2	Stigmatisme approché	10							
6	Conditions de Gauss									
7	Relations des sinus d'Abbe et de Herschell									
8	Exercice									

1 Indice de réfraction et chemin optique

1.1 Vitesse de la lumière

Dans le vide : $c = 2,997 \ 924 \ 58 \ . \ 10^8 \ \mathrm{m.s^{-1}}$

Constante de la physique depuis 1983.

1.2 Indice de réfraction

Un matériau transparent est caractérisé par son indice de réfraction :

$$n = \frac{c}{v} > 1$$

$$n = f(\lambda, T)$$

Indice moyen d'un matériau : $\lambda = 587, 56$ nm (raie d d'émission de l'hélium)

 ${
m TAB.}\ 1$: Indices de différents verres pour différentes longueurs d'onde. Tableau tiré du catalogue Melles ${
m GRIOT}$

lavelength	Orientias Indias is				100000000000000000000000000000000000000			
λ	Refractive Index, n					Fraunhofer	1120-110-1	1024 (1000 Page 1000)
(nm)	BK7	SF11	LaSFN9	BaK1	F2	Designation	Source	Spectral Region
351.1	1.53894	==:		1.60062	1.67359		Arlaser	UV
363.8	1.53649	<u>-</u>		1.59744	1.66682		Ar laser	UV
404.7	1.53024	1.84208	1.89844	1.58941	1.65064	h	Hg arc	Violet
435.8	1.52668	1.82518	1.88467	1.58488	1.64202	g	Hg arc	Blue
441.6	1.52611	1.82259	1.88253	1.58415	1.64067		HeCd laser	Blue
457.9	1.52461	1.81596	1.87700	1.58226	1.63718		Ar laser	Blue
465.8	1.52395	1.81307	1.87458	1.58141	1.63564		Ar laser	Blue
472.7	1.52339	1.81070	1.87259	1.58071	1.63437		Ar laser	Blue
476.5	1.52309	1.80946	1.87153	1.58034	1.63370		Ar laser	Blue
480.0	1.52283	1.80834	1.87059	1.58000	1.63310	F'	Cdarc	Blue
486.1	1.52238	1.80645	1.86899	1.57943	1.63208	F	H ₂ arc	Blue
488.0	1.52224	1.80590	1.86852	1.57927	1.63178		Arlaser	Blue
496.5	1.52165	1.80347	1.86645	1.57852	1.63046		Ar laser	Green
501.7	1.52130	1.80205	1.86524	1.57809	1.62969		Ar laser	Green
514.5	1.52049	1.79880	1.86245	1.57707	1.62790		Ar laser	Green
532.0	1.51947	1.79479	1.85901	1.57580	1.62569		Nd laser	Green
546.1	1.51872	1.79190	1.85651	1.57487	1.62408	e	Hg arc	Green
587.6	1.51680	1.78472	1.85025	1.57250	1.62004	d	He arc	Yellow
589.3	1.51673	1.78446	1.85002	1.57241	1.61989	D	Na arc	Yellow
632.8	1.51509	1.77862	1.84489	1.57041	1.61656		HeNe laser	Red
643.8	1.51472	1.77734	1.84376	1.56997	1.61582	c	Cdarc	Red
656.3	1.51432	1.77599	1.84256	1.56949	1.61503	C	H ₂ arc	Red
694.3	1.51322	1.77231	1.83928	1.56816	1.61288		Ruby laser	Red
786.0	1.51106	1.76558	1.83323	1.56564	1.60889			18
821.0	1.51037	1.76359	1.83142	1.56485	1.60768			1R
830.0	1.51020	1.76311	1.83098	1.56466	4/.60739		GaAlAs laser	1R
852.1	1.50980	1.76200	1.82997	1.56421	1.60671	S	Cearc	1R

1.3 Chemin optique

$$L_{AB} = \int_{A}^{B} n.\mathrm{d}l$$

2 Principe de Fermat

2.1 Énoncé

Etant donnés deux points A et B fixés, la lumière pour aller de A à B suit le chemin optique extrémal :

$$\delta L = 0$$

Animation:

http://www.phy.ntnu.edu.tw/java/Fermat/Fermat.html

Consultation:

http://www.univ-lemans.fr/enseignements/physique/02/optigeo/fermat.html

http://www.univ-lemans.fr/enseignements/physique/02/optigeo/fermat.html

http://www.phy.ntnu.edu.tw/java/refraction/refraction.html

2.2 Conséquences directes

- 1. Propagation en ligne droite dans un milieu optiquement homogène
- 2. Loi du chemin inverse

3 Lois de Descartes

3.1 Définitions

La normale à la surface au dioptre au point d'incidence et le rayon incident forment le plan d'incidence.

La normale à la surface au dioptre au point d'incidence et le rayon réfléchi forment le plan de réflexion.

La normale à la surface au dioptre au point d'incidence et le rayon transmis (ou réfracté) forment le plan de réfraction.

3.2 Lois relatives à la réflexion

- Les plans d'incidence et de réflexion sont confondus
- L'angle de réflexion est tel que : i = -r

3.3 Lois relatives à la réfraction

Les plans d'incidence et de réfraction sont confondus.

- Pour la seconde loi, on distingue deux cas :
 - $-n_1 < n_2$

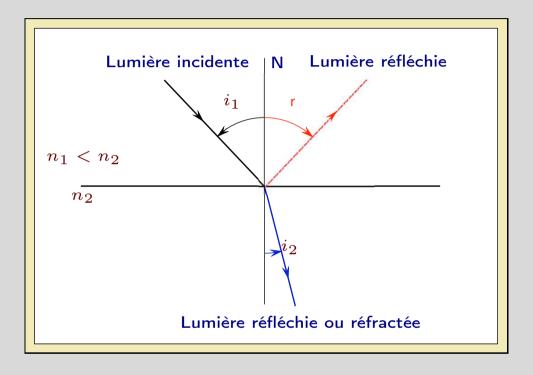


FIG. 1: Lois de Descartes

Pour la transmission : $n_1.\sin i_1 = n_2.\sin i_2$

 $-n_1 > n_2$

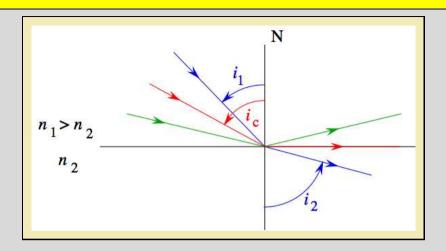


FIG. 2: Lois de Descartes

Pour un angle d'incidence supérieur à l'angle critique i_c qui vérifie :

$$\sin i_c = \frac{n_2}{n_1}$$

pour lequel la transmission est rasante : la réflexion est totale.

4 Miroir plan

Animations:

http://www.univ-lemans.fr/enseignements/physique/02/optigeo/mirplan.html

http://www.sciences.univ-nantes.fr/physique/perso/cortial/bibliohtml/mir_pl_j.ht

http://www.sciences.univ-nantes.fr/physique/perso/cortial/bibliohtml/mir_pl_j.ht

5 Stigmatisme

5.1 Stigmatisme rigoureux

Seul le miroir plan présente un stigmatisme rigoureux pour l'ensemble des points de l'espace.

5.2 Stigmatisme approché

Animation:

http://www.sciences.univ-nantes.fr/physique/perso/cortial/bibliohtml/mirsph_j.ht

http://www.sciences.univ-nantes.fr/physique/perso/cortial/bibliohtml/mirsph_j.ht

6 Conditions de Gauss

7 Relations des sinus d'Abbe et de Herschell

1. Condition de stigmatisme pour deux plans de fronts :

$$n.y.\sin\alpha = n'.y'.\sin\alpha'$$

Ouverture numérique d'un instrument : $O.N. = n. \sin \alpha$

2. Condition de stigmatisme pour deux couples de points axiaux, très proches l'un de l'autre :

$$n.dx.\sin^2\left(\frac{\alpha}{2}\right) = n'.dx'.\sin^2\left(\frac{\alpha'}{2}\right)$$