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Abstract

The conventional resolution criterion of an optical instrument was
established at the end of the nineteen century in the classical works of
Abbe and Rayleigh. This classical limit is based on the presumed reso-
lution capacity of a human eye and is not a fundamental physical limit
as, for example, the Heisenberg uncertainty relation. Classical super-
resolution techniques allow under certain conditions to go beyond the
Rayleigh limit.

In this lecture we shall present the quantum theory of optical super-
resolution in terms of the prolate spheroidal wave functions. We shall
demonstrate that the ultimate limit of super-resolution is determined
by the quantum fluctuations of light in the region of the object loca-
tion and the vacuum fluctuations outside it. We shall formulate the
standard quantum limit of super-resolution and show that one can go
beyond this limit using spatially multimode squeezed light.

*This series of lectures was delivered at Ecole Prédoctorale des Houches, session XXIV,
Quantum Optics, September 10-21, 2007. The session was directed by Nicolas Treps and
Isabelle Robert-Philip.
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1 Introduction

Today we are witnessing an extraordinary progress of digital imaging tech-
niques for both scientific and general public applications. This rapid techno-
logical development has steered a revival of interest for resolution enhance-
ment in imaging systems. The word “super-resolution” widely appears today
is the literature in different contexts and often has different meaning. Unfor-
tunately, this abuse of terminology has created a confusion over the concept
of super-resolution.

The original idea of super-resolution has appeared in the sixties as an
attempt to overcome the classical diffraction or the Rayleigh limit of res-
olution, imposed by diffraction in an optical system. Super-resolution is
achieved when the spatial Fourier spectrum of the image can be extrapo-
lated outside the transmission band of the imaging system. This out-of-band
extrapolation can be performed when one has a prior: information about
the object, namely that the object is of a finite spatial extent. Indeed in
such a case the spatial Fourier spectrum of the object is an entire analytical
function and, therefore, it is completely determined by its part transmitted
through the optical system. The out-of-band extrapolation of the spatial
Fourier spectrum is equivalent of resolution beyond the Rayleigh limit. This
idea of super-resolution has been widely discussed in the literature in the
sixties [1, 2, 3, 4, 5, 6].

In the eighties, following the rapid development of digital imaging tech-
niques, a new concept of resolution enhancement in digital imaging has



emerged and was also called “super-resolution”. However, it is very differ-
ent from the original concept of super-resolution described in the previous
paragraph. This new method allows to obtain a high-resolution digital image
from several low-resolution digital images using a specific signal processing
technique. The term “digital” reflects the fundamental difference between the
two methods.

In the modern electronic imaging applications an image is detected by a
charge-coupled device (CCD) or a complementary metal-oxide-semiconductor
(CMOS) sensor constituted by pixels of finite size. The resolution in a de-
tected digital image is determined not only by diffraction in the imaging
system, but also by the size of the pixel in the detecting electronic device.
Decreasing the size of the individual pixel one increases the resolution in
the digital image. However, even with infinitely small pixels one can never
improve the resolution beyond the Rayleigh limit. It is, therefore, more ap-
propriate to call the second method of the resolution enhancement “digital
deconvolution” instead of super-resolution.

Digital deconvolution technique uses multiple low-resolution digital im-
ages of the same object, shifted with respect to each other by a subpixel
distance. If the low-resolution images are shifted by integer number of pix-
els, then each individual image contains the same information about the
object and the resolution enhancement is impossible. In the case of subpixel
shifts the information contained in the individual images is different, and it
can be exploited to obtain a high-resolution. Recently, such a resolution en-
hancement approach has been one of the most active research areas in optical
imaging [7, 8|.

In this lecture we will be concerned with quantum theory of super-resolution
in the sense of the resolution beyond the Rayleigh limit and not in the sense
of the “digital deconvolution”.

2 Super-resolution in classical optics

2.1 Rayleigh limit, super-resolution and a prior: infor-
mation
The classical limit of resolution of an optical instrument was formulated

in the well-known works by Abbe and Rayleigh at the end of the nineteen
century |9]. This classical limit states that the resolution of an optical system



is limited by diffraction on the system pupil. Because of diffraction a point
source at the input of the system creates a diffraction pattern of finite size on
its output. When two point sources are placed closer and closer to each other,
their diffraction patterns start to overlap and it becomes more and more
difficult to discriminate these patterns. The smallest distance between two
input point sources that allows for discrimination depends on many factors
and is difficult to quantify. Several criteria have been proposed for such a
discrimination, and the most famous one is the classical Rayleigh criterion.
According to it, the diffraction patterns of two point sources are considered to
be just resolved if the central maximum of the first one coincides with the first
minimum of the second. For the case of the Airy pattern, corresponding to
the Fraunhofer diffraction of a point source at a circular aperture, this gives
the smallest distance between two input point sources equal to R = 0.61\/«,
where ) is the wavelength of the light and « is the ratio of the radius of the
system pupil to the distance between the pupil and the image plane. The
distance R is known as the Rayleigh resolution limit.

As follows from this arguments, the classical Rayleigh resolution limit
is based on a simple visual observation and presumed resolving capabilities
of a human eye. It is not a fundamental physical limit like, for example,
the speed of light or a Heisenberg uncertainty relation. Today it is recog-
nized that modern CCD cameras allow us to achieve the performance very
much exceeding that of a visual observation. For example, experimental mea-
surements of displacements in the nanometer range has been performed to
detect deflection of glass fibers [10, 11, 12|, microscopic phase objects [13],
movement of biological, subcellular vesicles [14], measurement of ultra-weak
absorption using the mirage effect [15], or in atomic force microscopy [16].
In all these measurements the resolution is superior to the classical Rayleigh
limit and is determined not by diffraction, but by different type of fluctua-
tions in the experimental scheme. The possibility of improving the resolution
beyond the diffraction limit is generally called “super-resolution” and often
has different meaning. Below we shall give a rigorous definition of the term
super-resolution in the sense used in this lecture.

In modern classical optics the resolution of an optical system is charac-
terized not by the two-point Rayleigh resolution criterion, but in terms of its
spatial transmission bandwidth. A typical optical system has a finite band
of spatial frequencies that are transmitted through the system up to some
cut-off frequency determined by the size of the system pupil. The optical
system is then said to be bandlimited or diffraction-limited since diffraction
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effects on its pupil are responsible for finite resolution.

A coherent diffraction-limited imaging system in classical optics can be
described by a linear equation relating the complex amplitude a(s) of an
input object with the complex amplitude e(s) of the image [17],

o0
e(s) = / h(s,s)a(s")ds', (1)
— o0
The impulse response function h(s,s’) that appears in this integral equa-
tion represents the image at point s in the image plane from a point-source
at point s’ in the object plane. For translationally invariant or isoplanatic
systems the impulse response depends only on the difference s — s’ and the
integral in (1) becomes convolution,

(s) = /_ s — $)a(s))ds' @)

o0

In optics, the impulse response h(s — s') is usually called the point-spread
function (PSF) of the system, and its Fourier transform the optical trans-
fer function (OTF). For bandlimited optical systems the OTF is identically
zero outside the transmission band of the system. Super-resolution is de-
fined as technique of restoring the spatial frequencies of the object outside the
transmission band, or in other words, to enhance the resolution beyond the
diffraction limit [17]. It is important to underline that in case when the ob-
ject and the image fields are related by the convolution (2), super-resolution
in this sense is impossible. To achieve super-resolution one needs some a
priori information about the input object. In this chapter we shall use as
the a priori information the assumption that the object has finite spatial
size. In this case, the spatial Fourier spectrum of the object is an entire
analytical function and therefore, it can be completely determined by the
analytic continuation from the part of the spectrum transmitted by the sys-
tem pupil [1, 2|. Such out-of-band extrapolation of the spatial spectrum of
the object is equivalent to the resolution enhancement beyond the Rayleigh
limit.

However, such an analytic continuation of the spatial spectrum of the ob-
ject is extremely sensitive to the presence of noise in the system. In fact, the
problem of out-of-band extrapolation of the spatial spectrum is a typical case
of the so-called “ill-posed problems” [18]. This property seriously hampers the
potential of super-resolution. In practice to achieve super-resolution one has



to detect the diffraction-limited image at the output of the optical system and
then try to reconstruct the original object using specially designed numerical
algorithms. In general case, an attempt to obtain significant super-resolution
beyond the Rayleigh limit leads to a drastic decrease of the signal-to-noise
ratio in the reconstructed object as compared to that in the original one. The
main conclusions that one can derive from the numerous papers on classical
super-resolution are |17|:

i) significant super-resolution in the sense of out-of-band extrapolation is
possible only in the case when the size of the original object is not too
large compared with the Rayleigh resolution distance;

ii) the amount of super-resolution increases logarithmically, i. e. rather
weakly, with the signal-to-noise ratio in the original object.

2.2 Classical super-resolution

The optical scheme of diffraction-limited coherent optical imaging is shown in
Fig. 1. For simplicity we consider one-dimensional case. The object of finite
size X is placed in the object plane. The first lens L; performs the spatial
Fourier transform of the object into the pupil plane with a pupil of finite
size d. Diffraction on this pupil is a physical origin of the finite resolution in
our scheme (we neglect diffraction on the imaging lenses). The second lens
Ly performs the inverse Fourier transform and creates a diffraction-limited
image in the image plane.

As mentioned above, to achieve super-resolution one needs some a priori
information about the object. In our case we know a priori that the object
is confined within the area of size X and is identically zero outside. The
spatial Fourier transform of such an object is an entire analytical function.
Therefore, knowing the part of the Fourier spectrum within the area d of the
pupil allows for an analytic continuation of the total spectrum and, therefore,
for unlimited resolution.

Let us introduce the dimensionless spatial coordinates in the object and
the image plane as s = 22/ X, and in the pupil plane as £ = 2y/d (see Fig. 1).
In terms of dimensionless coordinates s the transformation L of the classical
object amplitude a(s) into the classical image amplitude e(s) reads:

e(s) = (La)(s) = / M@(s’) ds', —o0 < s < 0. (3)

4 m(s—4¢)
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Figure 1: Optical scheme of one-dimensional coherent diffraction-limited op-
tical imaging.

Here ¢ = is the space-bandwidth product.

2N f
The problem of reconstruction of the object a(s) from a detected image

e(s) in the absence of noise is equivalent to inversion of the integral operator
L. The operator L* adjoint to L is given by [22]

* sinfc(s — §')]

(L7 f)(s) = / f(s)ds, |s| <1 (4)

oo T(s—8)
The product A = L*L is the self-adjoint operator,

! sinfe(s — §')]

(an = [ SRR e s <0, ®)

studied by Slepian and Pollak [19]. The orthonormal system of eigenfunctions
of A is given by
1

oi(s) = m¢k(8) 5] <1, (6)

0 ls| > 1,



where 1 (s) are the linear prolate spheroidal functions [19, 20|, and A are
the corresponding eigenvalues. The functions ¢ (s) form a basis in L?(—1,1)
and may be considered as “elements of information” of the input object. The
eigenvalues \; are an infinite set of real, positive numbers obeying 1 > A\g >
A1 > ... > 0. For small k the \; fall off slowly with £ until the index reaches
the critical value, k = 5, called the Shannon number,

2¢c  dX

- _ = /\—7 (7)
m f

beyond which the \; rapidly approach zero. In Fig. 2 we show the first 17

prolate functions ¢y (s) together with corresponding eigenvalues Ay for ¢ = 1.
Using the properties of prolate spheroidal functions,

S

| %%(g) ds' = Mtn(s), )
[ as = ) )

we obtain
Lop =V ek, L™k =/ Aepr. (10)

Expanding the object amplitude over the functions ¢g(s) and the image
amplitude over ¥ (s), we can easily find the relation between the expansion
coefficients of the object and the image. Indeed, since the functions pg(s)
form a complete orthonormal set in [—1, 1] we can write the object amplitude

as
)

a(s) =Y _arprls), || <1, (11)

k=0

with the coefficients a; given by

ap = /_OO a(s)er(s) ds. (12)

o0

Similar expansion can be written for the image amplitude in terms of func-
tions ¥ (s)

e(s) = Zekwk(s), —00 < § < 00, (13)
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Figure 2: Examples of the prolate spheroidal functions ¢ (s) and the corre-
sponding eigenvalues \.



with the coefficients e, given by

e = /_OO e(s)r(s) ds. (14)

Substituting these expansions into Eq. (3) and using the first of Egs. (10) we
obtain the following relation between a; and ey:

€ — \/)\Tgak. (15)

Let us assume that we can detect the classical field profile e(s) in the image
plane. Then using Eqgs. (14), (15)we can reconstruct the coefficients a,(;)

where (r) stands for “reconstructed”, as

Y

al” = B —— (16)

This equation demonstrates that, if we neglect the fluctuations in the imaging
and detection scheme, the reconstruction coefficients a,(:) are identical with
the coefficients of the input image a,. This is equivalent to unlimited super-
resolution. In order to establish the quantum limits of super-resolution we
have to determine the role of quantum fluctuations of light in the imaging
and the detection process.

3  Quantum theory of super-resolution

3.1 Quantum theory of optical imaging

In the quantum theory the classical object amplitude a(s) becomes the di-
mensionless photon annihilation operator in the object plane a(s) and the
classical image amplitude e(s) the corresponding photon annihilation opera-
tor in the image plane é(s). These operators obey the standard commutation
relations,

[a(s),al(s)] = d(s — &), [e(s), €'(s)] = o(s — &), (17)

and are normalized so that (af(s)a(s)) gives the mean photon number per
unit dimensionless length in the object plane and (é'(s)é(s)) - in the image
plane.
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In the quantum theory we can use Eqgs. (11),(13) now treating the expan-
sion coefficients a5 and e as photon annihilation operators a; and é;. Using
the properties of the prolate spheroidal functions it can be shown that the
operators a, in the object plane obey the following commutation relations:

[dkza d” = 5]{?17 [&lﬁ &l] =0. (18)

The same commutation relations must be satisfied by the photon annihilation
operators € in the image plane. However, Eq. (15) does not preserve the
commutation relations (18). The reason for this is that classical imaging
equation (3) takes into account only nonzero field amplitude in the region
|s] <1 of the object plane. The rest of this plane |s| > 1 is ignored because
there the classical field amplitude is zero. In the quantum theory this region
must be taken into account to guarantee the conservation of the commutation
relations.

To obtain the canonical transformation of the photon annihilation and
creation operators from the object into the image plane we shall split the
coordinate s into two regions, the “core”; |s| < 1, corresponding to the area
of localization of the classical object, and the “wings”, |s| > 1, outside these
area. The orthonormal bases in these areas of the object plane are given
by [21]

1

wi(s) = VA

<
ACETESN A sl <1,
0 5| > 1, sl s> 1

(19)

In terms of two sets {¢r(s)} and {xi(s)} we can write the annihilation
operators in the object plane as

a(s) =Y dwpr(s) + > brxn(s). (20)

Here by, are the annihilation operators of the prolate modes x; in the wings
region, expressed through the field operator a(s) by

by = /_Oo 6(5) e (5)ds. (21)

[e.9]

The photon annihilation operator é(s) in the image plane can be written in
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terms of functions ¥y (s)
é(s) = Zék¢k<8) + éL(‘S)a -0 < s <00, (22)
k=0

with the coefficients é; given by

e = /_OO é(s)r(s) ds. (23)

[e.e]

In Eq. (22) we have added the term é, (s) in order to satisfy the commuta-
tion relations (17). However, this term is orthogonal to the expansion over
the prolate spheroidal functions v (s) and, therefore, will not appear in the
transformation below.

Substituting the expansions (22), (20) into Eq. (3) we obtain the following
relation between the photon annihilation operators in the object and the

image plane, X
er =V A\l + /1 — A\ibg. (24)

It is easy to verify that this transformation preserves the commutation rela-
tions of the operators, [ag, a)] = [bg, b}] = [éx, &]] = -

Equation (24) is completely equivalent to the transformation performed
by a beam splitter. Indeed, if we consider the operators a; and by as the
photon annihilation operators in the modes defined by prolate spheroidal
waves incoming to the beam splitter with the amplitude transmission co-
efficient /), and the reflection coefficient /1 — \;, then e, is the photon
annihilation operator in the £th mode of the transmitted wave.

>From Fig. 1 one may think that the vacuum fluctuations coming into
the image plane from the region |£| > 1 of the Fourier plane outside the
pupil should be also taken into account. Indeed, when treating the field in
the Fourier plane as an operator we must include the contribution from this
region into the resulting field in the image plane. However, the advantage
of expansion (13) is that the field from this region does not contribute to
the expansion coefficients é; of the image because it is orthogonal to the
prolate spheroidal wave functions. This property was pointed out by Bertero
and Pike in [22| for the out-of-band classical noise and remains valid in the
quantum theory.

Let us assume that we can detect the photon annihilation operators é(s)
in the image plane using a sensitive CCD camera. It should be emphasized
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that, since we need the complex field amplitudes and not the intensities, one
should use the homodyne detection scheme with a local oscillator. Then we
can calculate the operator-valued coefficients d,(:) of the reconstructed object

as
NONEZ T 1—As
= — = + b. 25
ay, ST vl (25)

As follows from Eq. (25), the reconstruction of the input object is not exact
because of the second term in Eq. (25). This term contains the annihilation
operators by responsible for the vacuum fluctuations of the electromagnetic
field in the area outside the object. It is important to notice that these vac-
uum fluctuations prevent from reconstruction of the higher and higher coef-
ficients ay in the object because of the multiplicative factor /(1 — Ag)/Ax.
Indeed, the eigenvalues \; become rapidly very small after the index & has
attained some critical value. This leads to rapid “amplification” of the vac-
uum fluctuations in the reconstructed object that limits the number of the
reconstructed coefficients ay,.

3.2 Quantum limits of super-resolution

To draw the general conclusions applicable to different kinds of squeezed light
used as a coherent source for imaging, we shall assume that detection of the
image in the image plane is organized in such a way that it allows to detect
one of two quadrature components of the image field. In quantum optics this
is achieved by using the homodyne detection technique mixing the image field
in the detection plane with plane coherent local oscillator field. Therefore,
we shall decompose the field operator €, into its quadrature components

€r = €1 + 19k, (26)

and will investigate their fluctuations.

As follows from Eq. (24), the fluctuations of the image quadrature compo-
nents are related to those of the object and the vacuum fluctuations outside
the object,

((Aew)?) = Ml(Da)®) + (1= M) (Abu)?), (27)

with 4 = 1,2 for corresponding quadratures. In turn, the fluctuations in the
quadrature components of the reconstructed image can be calculated using
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Eq. (25) as follows

(aag) = (B 29

Let us calculate these fluctuations for three different cases:

1) the object in a coherent state and the vacuum outside the “physical
object”:

~

((Adux)?) = ((Abyr)

We obtain the following result,

[\]
=~ =

) == (29)

(Aal)?) = — (30)

which corresponds to the standard quantum limit of super-resolution.
2) the object in a coherent state and the squeezed vacuum outside the

object: X X
(Bauf) =1 {(Abw)) = e 51)

In this case we obtain,

1 1-X1
AA(T) 2 =+ - x2r 32
(Baf)) = 1+ 5™, (3)
an improvement beyond the standard quantum limit for the properly chosen
quadrature component.
3) the object in a squeezed state and the squeezed vacuum outside the
object:

. - 1 L,
((Day)®) = ((Abu)?) = e (33)
This provides,
(- 1
(AGR?) = e, (34)

further resolution improvement beyond the standard quantum limit with
multimode squeezed light.
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4 Conclusions

Classical concept of super-resolution allows to improve optical resolution of
an imaging system beyond the Rayleigh limit using a prior: information
about the finite spatial extent of the object. The amount of super-resolution
depends on two physical parameters of the imaging and detection system:
the signal-to-noise ratio, and the space-bandwidth product.

We have formulated the quantum theory of optical super-resolution that
allows to establish the ultimate performance limit of this method, imposed
by the quantum nature of light. In particular, we have obtained the standard
quantum limit of super-resolution and have shown that one can go beyond
this limit using multimode squeezed states of light.
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