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Quantum key distribution over 25 km with an

all-�ber continuous-variable system∗

Thierry Debuisschert†

Thales Research and Technologies
RD 128, 91767 Palaiseau Cedex, France

Abstract
We report on the implementation of a reverse-reconciliated coherent-

state continuous-variable quantum key distribution system, with which
we generated secret keys at a rate of more than 2 kb/s over 25 km of
optical �ber. Time multiplexing is used to transmit both the signal
and phase reference in the same optical �ber. Our system includes all
experimental aspects required for a �eld implementation of a quantum
key distribution setup. Real-time reverse reconciliation is achieved by
using fast and e�cient LDPC error correcting codes.

∗This series of lectures was delivered at Ecole Prédoctorale des Houches, session XXIV,
Quantum Optics, September 10-21, 2007. The session was directed by Nicolas Treps and
Isabelle Robert-Philip.

†The following lecture notes are based on a paper that will be published in Physi-
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other contributors : Jérôme Lodewyck, Matthieu Bloch, Raúl García-Patrón, Simon Fos-
sier, Evgueni Karpov, Eleni Diamanti, Nicolas J. Cerf, Rosa Tualle-Brouri, Steven W.
McLaughlin, Philippe Grangier, Cécile Neu, André Villing. They all are gratefully ac-
knowledged for their very signi�cant contribution.
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1 Introduction

Quantum Key Distribution (QKD) enables two remote parties, Alice and
Bob, linked by a quantum channel and an authenticated classical chan-
nel, to share a common random binary key that is unknown to a poten-
tial eavesdropper, Eve. Many QKD protocols [1] encode key information
in discrete variables of single photon light pulses, such as polarization or
phase [2, 3, 4, 5, 6, 7, 8, 9]. Recently, other protocols using so-called con-
tinuous variables (CV), such as both quadratures of a coherent state, have
been proposed [10, 11, 12, 13, 14, 15]. Channel symbols are formed by con-
jugate continuous quantum variables, linked by Heisenberg inequalities. The
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secrecy of the QKD protocol is based on the resulting quantum uncertainty
relations. Such protocols eliminate the need for single photon technology, as
they only require standard o�-the-shelf telecom components � such as diode
lasers, electro-optics modulators, and PIN photodiodes � compatible with
high repetition rates. On the other hand, CVQKD protocols require elabo-
rate classical error correction algorithms to e�ciently extract secret bits from
correlated continuous variables.

In this paper, we describe a complete implementation of the coherent-
state reverse-reconciliated (RR) CVQKD protocol described in [14]. In this
protocol, the quadratures x and p of a train of coherent-state pulses are mod-
ulated in the complex plane with a centered bi-variate Gaussian modulation
of variance VAN0, where N0 is the shot noise variance that appears in the
Heisenberg relation ∆x∆p ≥ N0. These coherent states are sent from Alice
to Bob through the quantum channel, along with a strong phase reference �
or local oscillator (LO). Upon reception, Bob randomly measures the x or p
quadrature by making the signal interfere with the LO in a pulsed, shot-noise
limited homodyne detector. This protocol allows Alice and Bob to share a
set of correlated Gaussian data. A random fraction of this set is publicly
revealed to probe the transmission parameters, while the remaining part is
used to build a secret key based on Bob's data. This is achieved in practice
with a classical error correction scheme called �Multi-Level Coding� using
e�cient one-way Low Density Parity Check (LDPC) codes. We report the
full implementation of both quantum and classical parts of this RRCVQKD
protocol over a standard single-mode telecom �ber of 25 km, leading to a
�nal secret key distribution rate of more than 2 kb/s.

2 Theoretical evaluation of the secret key rates

In this Section, we detail the calculation of the secret key rates that are
available to Alice and Bob when applying the RRCVQKD protocol. In QKD,
one evaluates the secret key rate by upper bounding the information that the
adversary, Eve, can acquire in the worst case. This is typically done under
the following assumptions: (i) Eve has no limit in terms of computational
power; (ii) Eve has full control over the quantum channel, and is only limited
in her action on this channel by the laws of quantum physics; (iii) Eve can
freely monitor the classical public channel used for key distillation, but she
cannot modify the messages (authenticated channel); (iv) Eve has no access
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to the laboratories (apparatuses) of Alice and Bob. Traditionally, the type
of attacks that Eve can implement are ranked by increasing power into three
classes, depending on how exactly she interacts with the pulses sent by Alice
with auxiliary pulses (ancillae), and on when she measures these ancillae.
The theoretical bound on Eve's information depends on the class of attacks
that is considered:

• Individual attack: Eve interacts individually with each pulse sent by
Alice, and stores her ancilla in a quantum memory. She then per-
forms an appropriate measurement on her ancilla after the sifting pro-
cedure (during which Bob reveals whether he chose to measure x or p),
but before the key distillation stage (in particular, before error correc-
tion). Using this attack, the maximum information accessible to Eve
is bounded by the classical (Shannon [16, 17]) mutual information IBE

on Bob's data. Moreover, in the case of continuous-variable QKD, it is
known that the optimal individual attack is a Gaussian operation [18],
which considerably restricts the set of attacks that need to be consid-
ered and yields a simple closed formula for IBE.

• Collective attack: Eve interacts individually with each pulse sent by
Alice but, instead of measuring immediately after sifting, she listens to
the communication between Alice and Bob during the key distillation
procedure, and only then applies the optimal collective measurement
on the ensemble of stored ancillae. In this attack, the maximum infor-
mation she may have access to is limited by the Holevo bound χBE [19].
As in the case of individual attacks against continuous-variable QKD,
Gaussian attacks have been shown to be optimal among all collective
attacks [20, 21], which results in a simple expression for χBE.

• Coherent attack: This is the most powerful attack that Eve can imple-
ment. Here, she is allowed to interact collectively with all the pulses
sent by Alice, and, after having monitored the key distillation mes-
sages, she applies an optimal joint measurement over all the ancillae.
The security with respect to this kind of attacks is more complicated
to address, but, under the assumption of the symmetry of the pri-
vacy ampli�cation and channel probing protocols, it was proven for
discrete-variable QKD in [22] (and conjectured for continuous-variable
QKD in [20, 21]) that coherent attacks are not more e�cient than col-
lective attacks. This step is quite important as it ensures unconditional
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security as long as one has a security proof with respect to collective
attacks, for which the key rates are far simpler to evaluate.

In the following, we will consider individual and collective attacks, for
which the security analysis lies on �rm grounds. We will then derive expres-
sions for IBE and χBE as a function of the losses and of the noise of the
quantum channel, assuming as usual that Eve can take both of them to her
advantage. We will restrict our study to Gaussian attacks, which have been
shown to be optimal [20, 21]; this signi�cantly simpli�es the calculation of
the secret key rates since we only have to consider covariance matrices. It
is known that Alice and Bob can distill perfectly correlated secret key bits
provided that the amount of information they share, IAB, remains higher
than the information acquired by Eve (IBE or χBE for reverse reconcilia-
tion). In this strictly information-theoretic point of view, and in the case of
RR, we de�ne the �raw� key rate as ∆IShannon = IAB − IBE, or respectively
∆IHolevo = IAB − χBE.

2.1 Entanglement-based CVQKD scheme

An usual prepare-and-measure (P&M) implementation of a Gaussian proto-
col with coherent states has been described in Section 1, and consists in a
quantum transmission followed by a classical data processing. During the
quantum part, Alice randomly generates two numbers (xA, pA) from a Gaus-
sian distribution, prepares a coherent state centered on (xA, pA), and sends it
to Bob through the quantum channel. Bob receives this state, and randomly
measures the quadrature x or p by choosing the appropriate phase for his
homodyne measurement.

As de�ned in Fig. 1, the quantum channel is characterized by its trans-
mission T ≤ 1 and its excess noise ε such that the noise variance at Bob's
input is (1 + Tε)N0. We call χline = 1/T − 1 + ε the total channel added
noise referred to the channel input, which is composed of the noise due to
losses 1/T − 1 and the excess noise ε. With these notations, all noises are
expressed in shot noise units. The signal then reaches Bob's detector, which
is modeled by assuming that the signal is further attenuated by a factor η
(detection losses) and mixed with some thermal noise (electronic noise vel

added by the detection electronics, expressed in shot noise units). The total
noise introduced by the realistic homodyne detector is χhom = (1+vel)/η−1,
when referred to Bob's input. The total noise added between Alice and Bob
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Figure 1: Entanglement-based scheme of CVQKD. The transmittance TA

and η characterize the measurements at Alice's and Bob's sides, while the
channel transmittance T and added noise χline are controlled by Eve. The
QM box corresponds to Eve's quantum memory.

then reads χtot = χline + χhom/T , referred to the channel input.
In the following, we will exploit the fact that this P&M description of

QKD with Gaussian states is equivalent to the entanglement-based (EB)
scheme presented in Fig. 1, which simpli�es the theoretical calculation of the
key rates and provides a uni�ed description of the di�erent existing proto-
cols [23]. The main idea is to view Alice's quantum state preparation as
resulting from the measurement of one half of a two-mode squeezed vacuum
state (EPR state). The second half of the EPR state corresponds to the
state sent to Bob through the quantum channel. The Gaussian state AB0 is
completely determined by its covariance matrix γAB0 , which has the form

γEPR
V =

[
V · 1

√
V 2 − 1 · σz√

V 2 − 1 · σz V · 1

]
(1)

where 1 =

[
1 0
0 1

]
and σz =

[
1 0
0 −1

]
where V is the variance, in shot noise units, of the thermal state that we
observe if we trace out A. This thermal state also corresponds exactly to
the thermal state observed at the output of Alice's station if we implement a
P&M protocol, resulting from the ensemble of Gaussian-modulated coherent
states (with some speci�c Gaussian distribution) [12, 13, 14, 24]. In fact,
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every P&M scheme can be rigorously translated into an EB scheme. First,
the generated states in a P&M scheme are equivalent to the states on which
mode B0 is projected after Alice's measurement in an EB scheme. Second,
the modulation of the states in a P&M scheme corresponds in the EB scheme
to the variation of the mean value of the state of mode B0 conditioned on
Alice's measurement. This implies that the modulation in the P&M scheme
is directly related to Alice's measurement in the EB scheme via a one-to-one
correspondence.

As an example, Alice applying a homodyne detection of xA (TA = 1)
corresponds to projecting the mode B0 onto squeezed states that are dis-
placed according to a Gaussian distribution of the measured quadrature xA.
This is exactly equivalent to the protocol proposed in [12]. If she applies
instead a heterodyne measurement (TA = 1/2), she prepares coherent states
modulated over a bi-dimensional Gaussian distribution of variance VAN0, as
in [14, 13]. Let us focus on the equivalence between the EB scheme and the
P&M scheme in this case. In the P&M scheme, Alice randomly chooses the
values xA and pA distributed according to a Gaussian distribution centered
on zero and of variance VAN0, and sends Bob a coherent state (VB0|A = 1
in shot noise units) centered on (xA, pA). In the EB scheme, Alice estimates
the quadratures xB0 and pB0 of the state sent to Bob by multiplying the
outcomes of her measurements by a factor α =

√
2V −1

V +1
(with a minus sign

for p-quadrature) [23]. Her uncertainty on the inferred values of xB0 and
pB0 for a given xA and pA is exactly VB0|A = 1, which corresponds to the
uncertainty of a coherent state in the P&M scheme. The inferred values of
xB0 and pB0 are distributed according to a Gaussian distribution of variance
VAN0 = (V − 1)N0, which coincides with Alice's modulation in the P&M
scheme.

Note that the EB scheme allows us, at the same time, to simplify the
description of the realistic detector at Bob side. As shown in Fig. 1, the
ine�ciency of Bob's detector is modeled by a beam splitter with transmission
η, while the electronic noise vel of Bob's detector is modeled by a thermal
state ρF0 with variance VNN0 entering the other input port of the beam
splitter, so that VN = 1 + vel/(1 − η). Considering the thermal state ρF0 as
the reduced state obtained from a two-mode squeezed state ρF0G of variance
VNN0 allows us to simplify the calculations.
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2.2 Individual attack � Shannon rate

The mutual information IAB is calculated directly from the variance VBN0

of the quadratures measured by Bob, with VB = ηT (V + χtot), and the
conditional variance VB|A = ηT (1 + χtot) using Shannon's equation

IAB =
1

2
log2

VB

VB|A
=

1

2
log2

V + χtot
1 + χtot

. (2)

In an individual attack, Eve performs her measurements just after Bob reveals
the quadrature he has measured (sifting) but before the error correction. Her
information is thus restricted to the Shannon information accessible in her
ancilla after measurement, and is bounded using the entropic uncertainty
relations as proven in [18]. In the RR protocol, the reference during the error
correction protocol being Bob, Eve's information reads

IBE =
1

2
log2

VB

VB|E
(3)

where VB = ηT (V + χtot) and VB|E = η

[
1

T (1/V + χline)
+ χhom

]
.

Note that we have considered the so-called �realistic model� suggested in [14],
where Eve cannot bene�t from the noise added by Bob's apparatus, χhom.
The Shannon �raw� key rate, proven secure against Gaussian or non-Gaussian,
individual or �nite-size attacks [18], then reads ∆IShannon = IAB − IBE.

2.3 Collective attack � Holevo rate

In this case, the mutual information between Alice and Bob remains the
same as in the case of individual attacks, namely Eq. (2). However, Eve's
accessible information is now upper bounded by the Holevo quantity [22],

χBE = S(ρE)−
∫

dxB p(xB) S(ρxB
E ), (4)

where p(xB) is the probability distribution of Bob's measurement outcomes,
ρxB

E is the state of Eve's system conditional on Bob's measurement outcome
xB, and S(ρ) is the von Neumann entropy of the quantum state ρ [25]. For
an n-mode Gaussian state ρ, this entropy reads

S(ρ) =
∑

i

G

(
λi − 1

2

)
, (5)
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where G(x) = (x + 1) log2(x + 1)− x log2 x and λi are the symplectic eigen-
values of the covariance matrix γ characterizing ρ. The calculation of Eve's
information χBE is done using the following technique. First, we use the fact
that Eve's system E puri�es AB, so that S(ρE) = S(ρAB). Second, after
Bob's projective measurement resulting in xB, the system AEFG (see Fig. 1)
is pure, so that S(ρxB

E ) = S(ρxB
AFG), where S(ρxB

AFG) is independent of xB for
protocols with Gaussian modulation of Gaussian states. Thus, Eq. (4) be-
comes

χBE = S(ρAB)− S(ρxB
AFG), (6)

and can be calculated from the covariance matrix γAB that is inferred from
the channel probing, the detector e�ciency η, and the detector electronic
noise vel.

The entropy S(ρAB) is calculated from the symplectic eigenvalues λ1,2 of
the covariance matrix

γAB =

[
γA σAB

σT
AB γB

]
(7)

=

[
V · 1

√
T (V 2 − 1) · σz√

T (V 2 − 1) · σz T (V + χline) · 1

]
The symplectic eigenvalues of γAB are given by

λ2
1,2 =

1

2

[
A±

√
A2 − 4B

]
, (8)

where A = V 2(1−2T )+2T+T 2(V +χline)2 and B = T 2(V χline+1)2. Similarly,
the entropy S(ρxB

AFG) is determined from the symplectic eigenvalues λ3,4,5 of
the covariance matrix characterizing the state ρxB

AFG after Bob's projective
measurement, namely

γxB
AFG = γAFG − σT

AFG;B1
(XγBX)MPσAFG;B1 , (9)

where X =

[
1 0
0 0

]
and MP stands for the Moore Penrose inverse of a

matrix. The matrices σAFG;B1 in Eq. (9) can be read in the decomposition
of the matrix

γAFGB1 =

[
γAFG σT

AFG;B1

σAFG;B1 γB1

]
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which is obtained by rearranging the lines and columns of the matrix de-
scribing the system AB1FG (see Fig. 1),

γAB1FG = Y T
[
γAB ⊕ γEPR

F0G

]
Y (10)

where Y =
(
1A ⊕ SBS

BF0
⊕ 1G

)
.

This matrix is obtained by applying onto systems B and F0 a beam splitter
transformation (SBS

BF0
) that models the e�ciency η of Bob's detector, where

F0 is the thermal state that models the electronic noise of the detector vel. A
long but straightforward calculation shows that the symplectic eigenvalues
λ3,4 are given by

λ2
3,4 =

1

2
(C ±

√
C2 − 4D) (11)

where C =
V
√

B + T (V + χline) + Aχhom
T (V + χtot)

and D =
√

B
V +

√
Bχhom

T (V + χtot)
.

while the last symplectic eigenvalue is simply λ5 = 1.
The Holevo information bound then reads

χBE = G

(
λ1 − 1

2

)
+ G

(
λ2 − 1

2

)
(12)

− G

(
λ3 − 1

2

)
−G

(
λ4 − 1

2

)
and the Holevo �raw� key rate, proven secure against collective attacks, reads
∆IHolevo = IAB − χBE.

3 Implementation of continuous-variable quan-

tum key distribution

3.1 Experimental setup

The experimental setup for the CVQKD experiments that we have performed
is shown in Fig. 2. It is a coherent-state QKD setup, operating at 1550 nm
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Figure 2: Experimental setup for CVQKD.

and consisting entirely of standard �ber optics and telecommunication com-
ponents. Alice uses a laser diode, pulsed with a repetition rate of 500 kHz, to
generate pulses with a width of 100 ns. Using a highly asymmetric �ber-optic
coupler, these pulses are split into a strong phase reference, the local oscilla-
tor (LO), containing typically 109 photons per pulse, and a weak signal. The
signal pulses are displaced in the complex plane, with arbitrary amplitude
and phase, randomly chosen from a two-dimensional Gaussian distribution
centered at zero and with an adjustable variance VAN0. The selected ampli-
tude and phase values are set by computer-driven electro-optics amplitude
and phase modulators placed in the signal path. Finally, after part of the
signal is removed for synchronization and system characterization purposes
(see Section 3.2 for details), Alice's desired modulation variance is adjusted
with a second amplitude modulator and a variable attenuator.

To avoid any polarization and phase drifts that may occur between the
signal and LO over long-distance transmissions, and thus an incurred addi-
tional noise, both signal and LO pulses need to travel in the same optical
�ber. Because of the simplicity of the corresponding setup, we have opted for
time multiplexing, which is implemented by delaying the LO using an 80 m

11



�ber in its path and then combining the signal and LO pulses at the output
of Alice's setup, as shown in Fig. 2. Subsequently, the signal and LO pulses,
separated by 400 ns, are sent to Bob via the quantum channel, which is a
standard single-mode optical �ber coil.

Bob passively demultiplexes the signal and LO using a 90/10 �ber-optic
coupler, thus introducing a 10% loss in the signal. Then, Bob selects the
quadrature to be measured by adjusting the measurement phase with a
computer-driven phase modulator placed in the LO path. Another 80 m
delay line, placed now in the signal path, results in the signal and LO pulses
overlapping at the output beamsplitter of the interferometer. To ensure a
good interference contrast, the path di�erence between the signal and LO
has to be adjusted to less than a centimeter. The selected quadrature mea-
surement is then obtained with an all-�ber shot-noise limited time-resolved
pulsed homodyne detection system. This measurement consists in the sub-
straction of the photocurrents of two fast InGaAs photodiodes followed by a
low noise charge ampli�er and a constant gain amplifying stage.

The choice of the coupling ratios for the multiplexing and demultiplexing
couplers of the signal and LO in the described setup is the result of a trade-
o�. First, the intensity of the LO at the homodyne detection stage needs
to be su�ciently high for the shot noise to be signi�cantly higher than the
electronic noise of the detector. Typically, more than 107 photons per pulse
are required for this purpose. Second, signal losses at Bob's site need to
be minimized because they directly contribute to errors that decrease the
mutual information between Alice and Bob. The coupling ratios quoted in
Fig. 2 re�ect this trade-o� and ful�ll the intensity level constraints and the
stability requirements of the system.

3.2 System automation

Alice and Bob communicate via a synchronous automatic data processing
software, described in detail in [26]. A key transmission is composed of inde-
pendent blocks containing 50 000 pulses. Among these pulses, 10 000 are used
as test pulses which have agreed amplitude and phase values, and serve the
dual purpose of synchronizing Alice and Bob and determining the relative
phase between the signal and the LO. An additional random subset of the raw
data, typically 5 000 pulses, is used for statistical evaluation of the channel
parameters, namely the channel transmission T and the excess noise ε, over
this subset. In addition, the signal level sent by Alice and LO level received
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by Bob are monitored in real-time on an individual pulse basis. Note that
monitoring the LO level for each pulse also serves the purpose of avoiding
potential �side-channel� attacks which might tamper classically with the LO
intensity. When combined with an appropriate calibration, these measure-
ments allow us to obtain an accurate estimate of the shot noise level at Bob's
site, which is used as a normalization factor. From this calibration, we can
then determine the second order moments of the data distribution between
Alice and Bob: VAN0, VBN0, and the correlation ρ. These moments yield
the channel parameters T and ε, and the information rates. It is important
to point out that T is measured both using test pulses of �xed amplitude
and a subset of the raw data, and the agreement between the two values
is continuously checked. Taking into account the fraction of pulses used in
each block for synchronization and system characterization, the repetition
rate e�ectively used for key distribution is 350 kHz. We note that higher
repetition rates up to 1 MHz have been implemented.

We have designed a software that both manages the interface between
Alice and Bob and ensures proper hardware operation, with features aiming
towards the complete automation of the CVQKD system. A software feed-
forward loop automatically adjusts every 10 seconds the bias voltages that
need to be applied to the amplitude modulators in Alice's site, thus com-
pensating for thermal drifts that occur in the timescale of a few minutes.
Furthermore, Alice's output modulation variance is stabilized and controlled
by a software loop to prevent natural drifts of the system from modifying
the signal to noise ratio (SNR). This keeps the SNR within the range com-
patible with the reconciliation codes. At Bob's site, another software drives
Bob's phase generator, using binary numbers provided by a quantum random
number generator (id Quantique). This chosen phase is later compensated
by the measurement of the relative phase between the signal and LO. The
implementation of these automated procedures ensures a stable and reliable
system operation with minimal human intervention. Finally, with the excep-
tion of the 50/50 coupler at the input of the homodyne detection system,
the setups of Alice and Bob consist entirely of polarization-maintaining com-
ponents. This means that polarization control is only required before the
homodyne detector, and to compensate for polarization drifts in the quan-
tum channel. The use of a polarization-maintaining homodyne detector and
a software-driven low-loss dynamic polarization controller placed at the input
of Bob's setup allows the implementation of the required compensation while
only inducing reasonable losses to the signal, and leads to fully automatic
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operation of the QKD system.

3.3 Experimental parameters and noise analysis

In the previous sections we have described a system that produces correlated
Gaussian-distributed continuous variables at an e�ective rate of 350 kHz. In
order to obtain the raw key distribution rate from these correlations, we need
to evaluate the losses and noise sources that are present in the system and
degrade its performance. At Alice's site, several sources of loss are present
in the signal path, namely modulators (2.5 dB each), polarizers (0.3 dB),
connectors (0.2 dB) or couplers. These losses do not a�ect the system per-
formance because the signal level is set at Alice's output. However, the losses
in the LO path need to be controlled so that the intensity level is su�cient for
the homodyne detection measurement, as we discussed in Section 3.1. The
quantum channel is a 25 km single-mode optical �ber, which presents a loss of
5.2 dB. At Bob's site, the losses of the components in the signal path deterio-
rate the transmission signal to noise ratio (SNR) and thus the amount of key
information exchanged between Alice and Bob. Therefore, these losses must
be minimized. To bene�t from the �realistic mode� assumption described in
Section 2, it is important to carefully calibrate Bob's setup e�ciency η be-
cause overestimating this value could open a security loophole in the system.
The present overall e�ciency, including the homodyne detection e�ciency, is
η = 0.606. Taking into account the measured value T = 0.302 for the channel
transmission e�ciency, we �nd that the overall transmission between Alice
and Bob is ηT = 0.183.

In addition to the noise introduced by the channel and homodyne detec-
tion losses, an excess noise due to technical limitations as well as an elec-
tronic noise introduced by the homodyne detection system are present in
the system. The noises contributing to the excess noise ε can be indepen-
dently determined from the experimental data, and lead to an excess noise
of ε = 0.005 shot noise units for a modulation variance VAN0 = 18.5N0. As
discussed in Section 3.2, during key transmission the excess noise is measured
by the data processing software. This measurement was checked experimen-
tally with the implementation of an intercept and resend attack, where we
expect an excess noise of two shot noise units, corresponding to the �entan-
glement breaking� bound for the coherent-state CVQKD protocol [27]. It is
important to point out that, in principle, the excess noise is not caused by
Eve and could be considered inaccessible to her. However, because the diode

14



phase noise and the modulation noises depend on the modulation settings,
it is di�cult to accurately estimate and calibrate this excess noise. Thus,
to avoid compromising the security of our implementation we assume that it
is in fact generated and controlled by Eve. Finally, the homodyne detector
electronic noise contributes vel = 0.041 shot noise units to the total noise.

With the help of the equations given in Section 2, the noise measurements
described above lead to the raw secret rates:

IAB = 365 kb/s, IBE = 313 kb/s
∆IShannon = 52 kb/s

IAB = 365 kb/s, χBE = 316 kb/s
∆IHolevo = 49 kb/s

To obtain a secret key from this information, available in the form of raw
Gaussian correlated data, we have to e�ciently extract a string of secret bits
from this data. This is the subject of the next section, which focuses on the
Shannon rate. A very similar procedure can be applied to the Holevo rate.

4 Reconciliation of continuous Gaussian vari-

ables

In photon-counting based QKD protocols, data is readily available as binary
digits and can be easily processed for error correction and privacy ampli�ca-
tion using well-known protocols such as Cascade [28] or Winnow [29]. The
amount of secret key that can be extracted from these error-correction al-
gorithms depends on the error rate of the noisy key. On the other hand,
continuous-variable QKD protocols only provide Alice and Bob with se-
quences of correlated Gaussian symbols, from which various noise variances
are determined [27]. In particular, the variance of the excess noise is the
analog of the error rate in photon-counting QKD protocols. From these vari-
ances, the mutual informations IAB and IBE can be deduced, and thus the
secret key rate. Therefore, for CVQKD protocols high secret key distribu-
tion rates are attainable, provided that the secret information ∆IShannon =
IAB − IBE available from the raw Gaussian data can be e�ciently extracted.
>From a strict information-theoretic perspective there exists no fundamental
limitations to this extraction process. However, in practice, error correction
requires more information exchange than predicted by Shannon's theory. The
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raw secret information rate is therefore decreased to the e�ective secret rate
∆IShannon

e�
= βIAB − IBE, where the e�ciency β < 1 characterizes how close

the reconciliation algorithm operates with respect to the Shannon limit (see
Section 4.1). Since the maximum achievable transmission distance ultimately
depends on the value of β, designing e�cient reconciliation algorithms is one
of the challenges of CVQKD. The e�ciency of the �rst reconciliation algo-
rithms used for CVQKD [30, 31] did not reach 80% for signi�cant line losses,
which limited the maximum transmission distance to less than 20 km. In
what follows, we �rst brie�y review the key principles of a more e�cient
algorithm presented in [32], and then focus on its practical implementation.

4.1 Multilevel reverse reconciliation with Low-Density

Parity-Check codes

Let X denote the random variable representing Alice's Gaussian symbols and
Y the one representing Bob's symbols. In theory Alice and Bob should be
able to extract up to I(X; Y ) common bits from their correlated sequence.
Following the idea of [30], Bob �rst quantizes his data to obtain discrete sym-
bols, represented by the variable Q(Y ), and assigns a binary label to each
of them. The quantization necessarily reduces the amount of extractable
information I(X,Q(Y )) < I(X; Y ); however, the penalty can be made neg-
ligible by choosing the quantizer Q to maximize the mutual information
I(X;Q(Y )). In order to allow Alice to recover his bit sequence without
errors, Bob should then send redundant information, such as the value of
parity-check equations. The theoretical number of such redundancy bits is
H(Q(Y )|X) [33], however in practice perfect error correction is only possible
when the number of bits disclosed Mrec exceeds this limit. The e�ciency β
of a practical reconciliation algorithm is then de�ned as:

β =
H(Q(Y ))−Mrec

I(X; Y )
≤ I(X;Q(Y ))

I(X; Y )
≤ 1. (13)

The principle of our reconciliation scheme is shown in Fig. 3. Once his
Gaussian symbols {yi} have been quantized into {Q(yi)}, Bob assigns a L-
bits binary label {`j(yi)}j=0..L−1 to each of them, and calculates a set of
parity bits (or syndromes) for each individual level j of label bits. In our
case, the number of levels in the multilevel reconciliation is L = 4. This
particular encoding incurs no loss of performance, and the ideal number of
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Figure 3: Principle of multilevel reconciliation with LDPC codes.

parity bits to disclose at each level can be precisely calculated [32]. The levels
corresponding to the less signi�cant bits often require almost as many parity
bits as there are data bits, and in this case Bob can simply disclose the entire
level. For the levels corresponding to more signi�cant bits, the parity bits are
calculated according to the parity-check matrix of Low Density Parity Check
(LDPC) codes. Finally, a few extra parity bits are obtained by applying an
algebraic code (such as a BCH code [34]) to the whole data sequence.

Alice retrieves Bob's bit sequence by decoding the bit levels successively,
using her Gaussian symbols {xi} and the syndromes sent by Bob. As illus-
trated in Fig. 3, the decoding of a level also exploits the results obtained
at the decoding of the previous levels. The standard decoding algorithm of
LDPC codes (Sum-Product [35]) may sometimes leave a few errors uncor-
rected, however the parity bits obtained with the algebraic code are usually
su�cient to correct them.

In comparison with the algorithm proposed in [30], which introduced
slice reconciliation with turbo codes, the good e�ciency obtained with this
algorithm stems from three key features. First, codes applied at each level are
state-of-the-art LDPC error correcting codes. Then, the reliability associated
to the decision (so-called soft decoding) output from these codes is used as
an a priori for the decoding of other levels, rather than only the bit estimate
issued by each decoder. Finally, we allow several iterations between the levels.
In fact, soft decoding enables us to start the decoding of a level j even if the
previous level j − 1 has not been successfully corrected. A later attempt at
decoding level j−1 might bene�t from a partial decoding of level j and could
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terminate successfully. In addition, the exchange of information during the
whole reconciliation process is unidirectional, which leaves no ambiguity on
the information intercepted by the eavesdropper.

It was shown in [32], that LDPC codes with a block length of 200 000 bits
were su�cient to achieve e�ciencies above 85% over a wide range of SNR.

The e�ciency β characterizes the ultimate performance of a reconcilia-
tion algorithm, however it only assesses its performance from an information-
theoretic standpoint and does not account for the associated computational
complexity. In practice, the latter is of uttermost importance if one hopes to
obtain high secret key distribution rates. Before going on to the details of
the implementation of our algorithm, it is worthwhile discussing the trade-
o� between e�ciency and decoding complexity. Increasing the reconciliation
e�ciency while still maintaining an arbitrarily low probability of decoding
error would require LDPC codes operating closer to the Shannon limit as well
as many more iterations in the decoding process. It is clear that the code
block length and decoding complexity of this scheme would then quickly be-
come prohibitive. However, a better trade-o� can be obtained by maintaining
an arbitrarily low probability of undetected errors. In fact, if the reconcili-
ation algorithm detects all decoding failures with high probability but fails
to correct errors with probability pfail, the e�ective secret information rate
becomes ∆IShannon

e�
= (βIAB − IBE) (1− pfail). It is di�cult to obtain an

analytical expression of pfail as a function of β due to the iterative nature
of the decoding process, however we observed via Monte-Carlo simulation
that β could be increased by a few percents without too much sacri�ce on
pfail. Table 1 shows our simulation results obtained for a mutual informa-
tion I(X; Y ) = 1 bit/symbol, a 4-bit quantization, length 200 000 LDPC
codes, and for a BCH code rate of 0.998 to obtain the extra parity bits. No
undetected errors appeared during the simulations.

LDPC code rates β pfail

0/0/0.42/0.94 86.7% 0
0/0/0.44/0.94 88.7% 10−4

Table 1: Simulation results.
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4.2 Practical implementation

As mentioned earlier, the e�ciency of the reconciliation strongly depends on
how close the LDPC codes operate with respect to their ideal limit. High
e�ciency is therefore only achievable with relatively large block length (typ-
ically over 100 000 bits) and randomly constructed codes [35], which makes a
hardware implementation of the algorithm unrealistic. To date, high decod-
ing throughputs on Field Programmable Gated Arrays (FPGAs) have only
been obtained with structured short length codes, which speci�c structure
allowed a certain amount of parallelism. In our situation, a software imple-
mentation of the algorithm turned out to be the only viable solution. Typical
software implementations of the Sum-Product decoding algorithm are rather
slow, however the execution speed can be substantially improved by per-
forming �xed-point operations and approximating computationally intensive
functions with table look-ups [36]. These simpli�cations yield a signi�cant
overall speed gain with a negligible performance degradation. The conver-
gence speed of the LDPC codes can also be accelerated by using a modi�ed
version of the standard Sum-Product decoding algorithm [37]. A simple
change in the scheduling of the decoding reduces the number of iterations by
a factor almost two without any penalty in terms of performance.

In the situation of interest for CVQKD, most of the complexity of the
reconciliation algorithm comes from the use of two LDPC codes of same
block length. The decoding complexity depends on many parameters, such
as the number of iterations performed during the decoding of each code,
the number of times each level is decoded, the average number of terms
involved in parity-check equations, etc. For a desired level of performance,
there exists no generic method for �nding a set of parameters minimizing
the complexity because all parameters interplay in a complex manner. For
instance, choosing �better� codes operating closer to the Shannon limit could
reduce the number of iterations required in each LDPC decoder, but the size
of the parity-check equations would generally increase. Likewise, increasing
the number of iterations within a LDPC decoder may sometimes reduce the
number of iterations required between di�erent decoders. Hence the choice of
the parameters described hereafter results from many heuristic optimizations.
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dependence of ε on VA, and use the experimental parameters given in Sec-
tion 3. The curves show the key distribution rate for values of β ranging
from 0.6 to 1.0, and the �lled circles show the e�ciency we actually achieve
for di�erent SNR.

4.3 Optimal reconciliation parameters

Although code parameters cannot be deduced from an analytical calcula-
tion, the optimal modulation variance is the result of a quantitative compro-
mise. The reconciliation e�ciency only depends on the SNR of the trans-
mission, which, for a given distance, is an increasing function of the modu-
lation variance VAN0. However, as shown in Fig. 4, the e�ective secret rate
∆IShannon

e�
= βIAB−IBE as a function of VA and SNR clearly exhibits an opti-

mal value for VA. For the targeted transmission distance of 25 km (T = 0.302)
and considering the detector e�ciency and noise discussed in the previous
section, which require a reconciliation e�ciency above 80%, we obtained the
best performance/complexity trade-o� with the following parameters:

• modulation variance VAN0 = 18.5N0 (I(X; Y ) = 1.045 bit/symbol),

• quantization with 16 equally spaced intervals (I(X;Q(Y )) = 1.019
bit/symbol), ideally requiring 4 codes with rates 0.002/0.013/0.456/0.981,

• practical codes rates 0/0/0.42/0.95, yielding an e�ciency β = 0.898.
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These reconciliation parameters are adjusted as the line parameters (namely
the excess noise) �uctuate, and yield the following secret key distribution
rates:

∆IShannone� = 15.2 kb/s ∆IHolevoe� = 12.3 kb/s

Since the LDPC codes are very demanding in computing power, the rec-
onciliation speed is directly a�ected by the processor speed. The use of one
core of a dedicated Core 2 Duo Intel processor leads to a reconciliation speed
of 40 000 Gaussian symbols/s, while using a NVidia GTX 7950 graphics pro-
cessor allows a speed of 63 000 symbols/s, to be compared with the current
repetition rate of 350 000 symbols/s. Taking into account this speed limita-
tion, the �nal (net) secure key distribution rates are:

Using a Core 2 Duo CPU:
∆IShannonnet = 1.7 kb/s ∆IHolevonet = 1.4 kb/s

Using a GTX 7950 GPU:
∆IShannonnet = 2.7 kb/s ∆IHolevonet = 2.2 kb/s

We note that the reconciliation procedure described above has been opti-
mized for the case of the Shannon entropy, and further optimization should
be considered to achieve a higher Holevo rate.

5 Privacy ampli�cation

At the end of the reconciliation process, the classical error correction algo-
rithm outputs blocks of b = 400 000 bits (i.e the two most signi�cant quanti-
zation levels of blocks of n = 200 000 continuous variables), and each of them
needs to be compressed into a much shorter secret key of typically k = 10 000
secret bits, depending on the measured secret key distribution rate. In or-
der not to a�ect the overall classical processing speed, this particularly large
input size requires us to use fast privacy ampli�cation algorithms. Privacy
ampli�cation [38] consists in randomly choosing a hash function mapping bit
strings of length b to bit strings of length k, among a suitable set of these
functions called a family. The probability of success of these algorithms is
characterized by the universality ε of the family of hash functions, and the
security parameter s, i.e. the number of bits that are sacri�ced during the
ampli�cation process. Quantitatively, the probability that Eve knows one
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bit of the �nal key is about max(2−s, ε − 1) [39]. For universal families of
hash functions, de�ned by ε = 1, only the security parameter s is therefore
relevant. The size of the resulting secret key is then k = n∆IShannon

e�
− s.

The simplest practical universal family of hash functions is the multi-
plication by a random element of the Galois �eld GF (2l) with l > b [38].
The number theoretic transform (NTT), a FFT-like algorithm in GF (2l) en-
ables us to rapidly perform this multiplication [39]. Still, the ampli�cation of
400 000 bits with this algorithm takes about 10 seconds on an average desk-
top computer, which is about as long as the whole reconciliation process,
thus signi�cantly decreasing the �nal secret key rate.

To avoid this long computation time, we use instead a non-universal fam-
ily of hash functions based on the NTT described in [39] (section 7.3.3).
In this algorithm, we �rst convert the incoming bit string into a vector of
Lp elements of the Galois �eld GF (p) (Lp = 214 and p = 33 832 961 are
suitable for our input string length). Then we compute the inverse NTT
of the component-wise product of the generated vector with a random vec-
tor with no zero element. The hash output is then obtained by converting
back the result to a bit string, which is then truncated to the desired key
length. This hash function evaluation only requires a few tens of millisec-
onds, but its universality is ε1 = 1 + k

p
' 1 + 5 · 10−4, allowing for security

parameters up to only about 10. To overcome this problem, we combine
this algorithm with the universal (ε2 = 1) family of hash functions based on
the multiplication in GF (2m). For this, we �rst non-universally hash our b
bits into m = 19 937 bits for which we know a Galois �eld, and then uni-
versally hash these resulting bits into k ' 10 000 bits. Although this second
hashing algorithm is much slower, the execution time is still tolerable due
to the reduced input size. The universality of the total composite hashing is
εc = 2k−19 937ε1 + ε2 [40], and so εc − 1 is small enough to allow virtually any
reasonable security parameter. On a desktop computer, the total hashing
time is 0.27 s per block, of which 0.2 s are consumed by the second hashing.

6 Generation of a secret key over a 25 km long

�ber

To �nalize our CVQKD system, we designed a software implementing the
classical channel between Alice and Bob. This software continuously retrieves
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Gaussian data from the software driving the experiment, and performs error
correction and privacy ampli�cation. It features an authentication backend
interface that is currently using the authentication algorithms developed by
the European Integrated Project SECOQC [41]. With the system described
in the previous sections, which combines CVQKD hardware and key distilla-
tion software, we have been able to transmit a binary secret key over a 25 km
long �ber coil with a �nal secret key distribution rate of 2 kb/s. This rate
takes into account the entire key distillation procedure, including the classi-
cal channel latency. By evaluating our transmission parameters for di�erent
channel transmissions we obtain the raw and e�ective key distribution rate
curves shown in Fig. 5.
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7 Conclusion

In conclusion, we have presented the implementation of a complete continuous-
variable quantum key distribution system, generating secret keys at a rate of
more than 2 kb/s over 25 km of optical �ber. The system is secure against
individual and collective attacks, when using Shannon or Holevo informa-
tion bounds, respectively. A single program drives hardware automation,
signal modulation and measurement, and performs authentication, reverse
reconciliation, and privacy ampli�cation. Our QKD setup is therefore fully
functional and meets all aspects required for a �eld implementation.

Currently, the secret key rate is limited by data processing and data
acquisition, rather than by optical components. Further improvements of
the reconciliation algorithms, as well as the use of faster components (CPUs
and data acquisition cards), should thus lead to a direct enhancement of the
key rate.
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