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QUANTUM OPTICS,

FROM ONE MODE TO MANY MODES∗

Claude Fabre
Laboratoire Kastler Brossel

Université Pierre et Marie Curie-Paris 6
Place Jussieu CC74, 75252 Paris cedex 05, France

fabre@spectro.jussieu.fr

Abstract

These lectures form a general introduction to the domain of Quan-
tum Optics, with a special emphasis on the notion of �eld eigenmodes
that are necessary to describe the quantum e�ects in light and de�ne
the photons: possibility of changing the basis of �eld eigenmodes and
choosing the most appropriate one, de�nition of intrinsic properties,
independent of the choice of basis. Are successively studied the single
mode quantum e�ects, the quantum correlations existing in bimodal
systems, and some interesting features of highly multimode systems
such as the optical images.

∗This series of lectures was delivered at Ecole Prédoctorale des Houches, session XXIV,
Quantum Optics, September 10-21, 2007. The session was directed by Nicolas Treps and
Isabelle Robert-Philip.
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1 EIGENMODE BASIS ANDQUANTIZATION

OF THE FREE RADIATION FIELD

1.1 The analytical signal

1.1.1 De�nition

The analytical signal, or complex �eld, is the generalization of the well known
complex representation of an oscillatory phenomenon. Let us consider a real
�eld E(r, t). Its Fourier transform is given by:

E(r, t) =

∫ ∞

−∞
Ẽ(r, ω)e−iωtdω

2π
(1)

Because of the reality of E, Ẽ(ω) = Ẽ
∗
(−ω). The Fourier decomposition (1)

contains therefore redundant information. The analytical signal, or complex
�eld, is de�ned by:

E(+)(r, t) =

∫ ∞

0

Ẽ(r, ω)e−iωtdω

2π
(2)

It depends only on the spectral components of positive frequency, and there-
fore has not this problem of redundancy. It allows us to calculate the real
�eld using the relation:

E(r, t) = E(+)(r, t) + E(+)∗(r, t) (3)

As we only deal with a free electromagnetic �eld, there is no static component
in it which would pose problems at the boundary ω = 0 of the integral.
E(+)∗(r, t) is often written E(−)(r, t).

1.1.2 Evolution equations

As Maxwell equations in vacuum (no charges, no currents) are linear equa-
tions with real and time independent coe�cients, they are also ful�lled by
the corresponding complex �elds:

∇ · E(+) = 0 ∇ ·B(+) = 0 (4)

∇× E(+) = − ∂

∂t
B(+) ∇×B(+) =

1

c2
∂

∂t
E(+)
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The free �elds can be also simply described by the complex vector poten-
tial A(+):

E(+) = − ∂

∂t
A(+) B(+) = ∇×A(+) (5)

In the Coulomb gauge, the Maxwell equations are equivalent to the set:

∆A(+) − 1

c2
∂2

∂t2
A(+) = 0 ; ∇ ·A(+) = 0 (6)

1.2 Decomposition on the basis of travelling plane waves
("TPW")

1.2.1 Decomposition in Fourier series

The system we are interested in has a �nite size, and can be included in a
big cubic volume (V ) of side L. Inside it, one can de�ne the spatial Fourier
components of any complex �eld A(+)(r, t) by:

A`(t) =
1

L3

∫
(V )

d3rA(+)(r, t) · ~ε`e
−ik`·r (7)

which allow us to write any complex �eld as a linear combination of a discrete
set of travelling plane waves (TPW)::

A(+)(r, t) =
∑

`

A`(t)~ε`e
ik`·r. (8)

The notation
∑

` means a sum over a set of integers ` = (nx, ny, nz, s), where
the positive or negative integers nx, ny, nz de�ne the components of the wave
vector k` :

(k`)x = nx
2π

L
; (k`)y = ny

2π

L
; (k`)z = nz

2π

L
. (9)

and s = 1, 2 labels two polarization unit vectors ~ε1 and ~ε2 orthogonal to each
other and to the wave vector k`. These vectors can be complex when one
wants to describe circular polarizations.
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1.2.2 Time evolution

>From (6), one deduces:
d2A`

dt2
= −ω2

`A` (10)

where ω` = c‖k`‖. The transverse plane waves are harmonic waves, as is well
known. Since A(+) contains only positive frequencies, the solution e+iω`t is
excluded, so that:

A`(t) = A`e
−iω`t. (11)

where A` is some complex number. In conclusion, because of the properties
of the analytical signal, the evolution equation of A`(t), instead of (10) is:

i
d

dt
A`(t) = ω`A`(t). (12)

It is a �rst order di�erential equation, rather similar to the Schrödinger equa-
tion.

1.2.3 Expression of the physical quantities

One has for the complex electric and magnetic �elds:

E(+)(r, t) = −i
∑

`

ω`A`(t)~ε`e
ik`·r (13)

B(+)(r, t) = i
∑

`

k` × ~ε`A`(t)e
ik`·r

The energy HR of the free �eld is

HR = ε0

∫
(V )

d3r(E2(r, t) + c2B2(r, t)) (14)

Using expressions (13) one can show that :

HR = 2ε0L
3
∑

`

ω2
` |A`|2 (15)

The energy of the free �eld appears as a sum of decoupled energies associ-
ated with each mode, the "excitation" of each mode being proportional to
|A`|2. The TPW modes therefore "diagonalize" the energy and, as such, are
eigenmodes of the problem.
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1.3 Identi�cation of the canonical conjugate quantities

1.3.1 Usual quantization procedure

Let us consider a classical system depending on some dynamical variables
{qi(t), pi(t)} (i = 1...n), the energy of which is given by the hamiltonian
H(q1, p1, ...qn, pn). These variables are canonical conjugate variables when
the evolution equations of the system are of the Hamilton-Jacobi form:

d

dt
qi =

∂H

∂pi

;
d

dt
pi = −∂H

∂qi
(16)

The quantization procedure associates with these classical, time-dependent,
variables {qi(t), pi(t)} quantum objects which are the hermitian, time inde-
pendent, operators {q̂i, p̂i} obeying the following commutation relations:

[q̂i, p̂j] = i~δi,j (17)

1.3.2 Case of the free �eld

Let us introduce the real and imaginary parts of the complex �eld A`(t):

A`(t) = AQ`(t) + iAP`(t). (18)

They allow us to simply write the energy:

HR = 2ε0L
3
∑

`

ω2
`

(
A2

Q` +A2
P`

)
(19)

>From (12), one deduces the evolution equations of these real quantities:

d

dt
AP` = ω`AQ` =

1

4ε0L3ω`

∂HR

∂AQ`

(20)

d

dt
AQ` = −ω`AP` = − 1

4ε0L3ω`

∂HR

∂AP`

Within a constant multiplicative factor, they are of the hamiltonian form
(16). The canonical conjugate quantities can be then chosen as:

qi ↔ 2
√
ε0L3ω`AQ` ; pi ↔ 2

√
ε0L3ω`AP` (21)
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1.4 Field Quantization on the TPW basis

1.4.1 Commutation relations

We can now associate with these classical quantities time-independent ob-
servables Âq` and Âq` obeying the commutation relations:[

2
√
ε0L3ω`Âq`, 2

√
ε0L3ω`Âp`′

]
= i~δ`,`′ (22)

which implies the following relation, which is nothing else than the birth
certi�cate of quantum optics:[

Âq`, Âp`′

]
=

i~
4ε0L3ω`

δ`,`′ (23)

Let us introduce the non hermitian operator associated with the complex
�eld amplitude Â` = Âq` + iÂp`. From (23) one deduces:[

Â`, Â
†
`′

]
=

~
2ε0L3ω`

δ``′ (24)

Within a multiplicative factor, it is a relation similar to the familiar commu-
tation relation between an annihilation operator and its hermitian conjugate.
If we write:

â` =

√
2ε0L3ω`

~
Â`, (25)

then one exactly retrieves the commutator algebra of a harmonic oscillator
[â`, â

†
`′ ] = δ``′ .

The complex vector potential operator Â
(+)

(r) can then be written, from
(8), as a linear combination of such annihilation operators:

Â
(+)

(r, t) =
∑

`

√
~

2ε0ω`L3
â`ε`e

ik`·r (26)

1.4.2 Hamiltonian of the quantized �eld

>From (19), we are led to the following expressions:

ĤR = 2ε0L
3
∑

`

ω2
`

(
Â2

q` + Â2
p`

)
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= ε0L
3
∑

`

ω2
`

(
Â`Â

†
` + Â†

`Â`

)
(27)

=
∑

`

~ω`

2

(
â`â

†
` + â†`â`

)
which is nothing else that the hamiltonian of an assembly of independent
quantum harmonic oscillators, for which the quantities analogous to posi-
tion and momentum are the real and imaginary parts of the spatial Fourier
component A` of the complex vector potential A(+)(r, t).

Let us note that we could have also chosen to write the energy in terms of
the Fourier components of the complex electric �eld E` = iω`A` = Eq` + iEq`,
instead of the vector potential A`. In this alternative approach, completely
equivalent to the previous one, the canonical conjugate variables are:

qi ↔ 2

√
ε0L3

ω`

Ep` ; pi ↔ 2

√
ε0L3

ω`

Eq` (28)

1.4.3 Stationary states

Stationary states are eigenstates of ĤR, that one can also write
∑

` ~ω`(â
†
`â`+

1/2). They are then also eigenstates of the "number operator" N̂` = â†`â`.
From the commutation relation, one straightforwardly deduces that the spec-
trum of this operator is the set of natural integers n`. In consequence, there
exist states |n`〉 such that:

N̂`|n`〉 = n`|n`〉 (29)

A stationary state of the radiation �eld is a tensor product of such states,
|n1〉 ⊗ ...⊗ |n`〉..., written |n1, ..., n`, ...〉:

ĤR|n1, ..., , n`, ...〉 =
∑

`

(n`~ω` + 1/2) |n1, ..., n`, ...〉 (30)

Due to the additive character of the energies of the radiation �eld, one can
say that the "number state" |n1, ..., n`, ...〉 (or Fock state) contains exactly n1

independent particles of energy ~ω1, etc, n` independent particles of energy
~ω`, etc, that are called photons.
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1.5 Change of mode basis

So far we have used the basis of travelling plane waves, because they are
related to the spatial Fourier transform and allow us to make simple calcu-
lations. In contrast, these waves, which have an equal amplitude over all the
volume L3, are not very physical quantities. We will see now other possible
bases.

1.5.1 Unitary transformation of the annihilation and creation op-
erators

Let us perform a unitary transformation on the set of travelling plane waves
(TPW) creation operators, and de�ne a new set of operators {b̂†m} by:

b̂†m =
∑

`

U `
mâ

†
` (31)

where U `
m is an element of a unitary matrix U (U−1 = U†). The hermitian

conjugate of this quantity is given by:

b̂m =
∑

`

(
U `

m

)∗
â` =

∑
`

(U−1)m
` â`, (32)

which enables us to calculate the commutator:

[b̂m, b̂
†
m′ ] =

∑
`,`′

(U−1)m
` U

`′

m′ [â`, â
†
`′ ] =

∑
`

(U−1)m
` U

`
m′ = δm,m′ (33)

One sees that the operators {b̂m} form, just like the operators {â`}, a
new set of annihilation operators of independent harmonic oscillators.

1.5.2 Field decomposition

Inverting relation (31), one obtains:

â` =
∑
m

U `
mb̂m (34)

This expression of â`, inserted in (26) allows us to obtain an expression of the
complex �eld operator expanded over the new set of annihilation operators
{b̂m}:
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Â(+)(r) =
∑
m

b̂mVm(r) (35)

where the vectorial function Vm is given by:

Vm(r) =
∑

`

√
~

2ε0L3ω`

U `
m~ε`e

ik`·r (36)

The set of vectorial functions {Vm} can be used as a basis on which one
can decompose any complex �eld. Each function Vm describes the spatial
mode attached to the annihilation operator b̂m. Note that this basis is in
general not orthonormal, because of the mode-dependent factor √ω` in the
coe�cient in front of the unitary transform matrix element U `

m .

1.5.3 Number states in the new basis

One can de�ne new number states |m : nm〉 which are the eigenstates of the
new number operators N̂m = b̂†mb̂m. These states will describe nm photons
in the new mode associated with the annihilation and creation operators b̂m
and b̂†m and the spatial mode {Vm}. These states will form in turn a new
basis for the Hilbert space of the quantized electromagnetic �eld, on which
any quantum state |Ψ〉 of the electromagnetic �eld can be expanded.

a-Invariance of the vacuum
The ground state of the radiation �eld, called the vacuum state, is the

tensor product of vacuum states in all TPW modes u`, and is noted |0〉. It
contains zero photons in all TPW modes and has the property:

∀` â`|0〉 = 0 (37)

This implies that:
∀m b̂†mb̂m|0〉 = 0 (38)

|0〉 is therefore also the tensor product of vacuum states in the {Vm} modes,
corresponding to zero photons in all the modes of the new basis: the vacuum
state is invariant over any change of mode basis.

b- Relation between the two kinds of number states

12



We can now derive the expression of a number state in the new basis
|m : nm〉 :

|m : nm〉 =
1√
nm!

(b̂†m)nm|0〉 =
1√
nm!

(∑
`

U `
mâ

†
`

)nm

|0〉 (39)

This expression is particularly simple in the case of the single photon state
|m : 1〉:

|m : 1〉 = b̂†m|0〉 =
∑

`

U `
mâ

†
`|0〉 =

∑
`

U `
m|` : 1〉 (40)

c- Invariance of the total number of photons
The operator N̂tot =

∑
` â

†
`â` gives the total number of photons in all the

modes in the TPW basis. As the transformation for the operators is unitary,
one has: ∑

m

b̂†mb̂m =
∑

`

â†`â` (41)

and therefore that the total number of photons is the same in any mode basis.
d- Energy
In contrast the hamiltonian HR, given by (27) is not invariant against uni-

tary transformations. It is transformed into an expression like
∑

m,m′ Em,m′ b̂†mb̂m′ .
The new modes are not necessarily decoupled in energy: they are not always
eigenmodes of the radiation �eld hamiltonian.

1.5.4 New basis of eigenmodes

Let us consider a particular case of unitary transformation like in (27), with
the following constraint added:

U `
m = 0 if ω` 6= ωm (42)

Such a unitary transformation mixes only modes of equal frequencies. One
has then:

Â(+)(r) =
∑
m

√
~

2ε0ωm

b̂mvm(r) (43)

an expression now exactly similar to the TPW decomposition (26), where
the vectorial functions vm, given by:

vm(r) =
∑

`

√
1

L3
U `

m~ε`e
ik`·r (44)

13



now form an orthonormal basis, satisfying the orthonormality and closure
relations: ∫

(V )

d3rvm(r) · v∗
m′(r) = δm,m′ (45)∑

m

vm(r) · v∗
m(r′) = δ(r− r′)

The number of photons of a given frequency is an invariant with respect
to this subset of transformations, which also leave invariant the expression
of the hamiltonian. The new modes are therefore also decoupled: they are
new eigenmodes of the radiation �eld. The photons de�ned on this mode
basis are therefore independent point-like particles of energy ~ωm, just like
the photons that we had de�ned at the beginning of this chapter from the
TPW basis.

Let us quote, as examples of bases of eigenmodes:

1. the standing plane waves (SPW), that we will study in more detail in
the next subsection;

2. the harmonic spherical waves, that are used to de�ne the photons that
are emitted by excited atoms in a spontaneous emission process;

3. the Laguerre-Gauss or Hermite-Gauss modes, useful to describe beams
of light at the paraxial approximation;

4. other bases, as we will see later, are convenient for simplifying some
problems, for example the basis containing the "noise mode" in quan-
tum imaging problems (see section (6.3.3)).

1.5.5 Example: standing plane waves (SPW)

Let us now study a very simple case: we only consider light travelling along
the Oz axis and of linear polarisation parallel to 0x. By projecting the �eld
on the Ox axis we can therefore forget the vector character of the electro-
magnetic �eld. Such a �eld can be expanded over a basis of travelling wave
modes eik`z with k` = n`2π/L. n` being a positive or negative integer, these
waves travel either in the direction of positive z or negative z. One can now
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de�ne new annihilation operators b̂m+ and b̂m− by:

b̂†m+ =
1√
2
(â†`=m + â†`=−m) (46)

b̂†m− =
1√
2
(â†`=m − â†`=−m)

These two relations de�ne a unitary transformation from the set â†`=m, â
†
`=−m)

to the set (b̂†m+, b̂
†
m−). It mixes modes of equal frequencies: according to the

previous subsection, the operators de�ned by (46) are creation operators of
photons in the eigenmodes vm±(r) de�ned by:

vm+(r) =
1√
2L3

(eikmz + e−ikmz) =

√
2

L3
cos kmz (47)

vm−(r) =
1√
2L3

(eikmz − e−ikmz) = i

√
2

L3
sin kmz

These functions correspond to standing plane wave eigenmodes (SPW), and
the number states |m± : n〉 describe n photons in the standing waves vm±(r).

Using relation (39), we can give the expression of the �rst number states in
the standing wave modes in function of the number states |` = m,n+〉⊗ |` =
−m : n−〉 in the travelling wave modes (that we shall write |n+, n−〉 to keep
simple notations) :

|m+ : 1〉 ⊗ |m− : 0〉 =
1√
2
(|1, 0〉+ |0, 1〉)

|m+ : 0〉 ⊗ |m− : 1〉 =
1√
2
(|1, 0〉 − |0, 1〉)

|m+ : 2〉 ⊗ |m− : 0〉 =
1

2
|2, 0〉+

1√
2
|1, 1〉+

1

2
|0, 2〉 (48)

|m+ : 0〉 ⊗ |m− : 2〉 =
1

2
|2, 0〉 − 1√

2
|1, 1〉+

1

2
|0, 2〉

|m+ : 1〉 ⊗ |m− : 1〉 =
1√
2
(|2, 0〉 − |0, 2〉)

Note that all these quantum states of light are factorized in the basis of
standing wave modes, but entangled in the basis of travelling wave modes.
This is a proof that the entanglement of a quantum state is not necessarily
an intrinsic property.

15



Looking at the coe�cients of the decomposition, one also observes that
the standing wave photons are in some way rearranged in the two travelling
wave modes by a kind of sorting process: according to the �rst relation, there
is an average of 50% photons in each travelling wave in the standing wave
single photon state, and respectively 25%, 50% ad 25% of the three possible
combinations in the two-photon states.

Let us now focus on the last formula. At �rst sight, the state |m+ :
1〉 ⊗ |m− : 1〉, like the others, should expand over the |0, 2〉, |1, 1〉 and |2, 0〉
states with the same probabilities as for the |m+ : 2〉 ⊗ |m− : 0〉. But it is
not the case: the state |1, 1〉 is missing in the decomposition. So that the
superposition of two photons travelling in opposite directions gives the same
state as one photon in each the two standing waves.
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2 OBSERVABLES

In order to describe the properties of the quantum �eld, one needs to de�ne
the physical observables of the system, which are built from the operators â`

and â†` by quantizing the corresponding classical quantities.

2.1 Constants of the motion

2.1.1 Energy

We have already considered it in subsection (1.4.2)

2.1.2 Momentum

One shows that, because of the translational invariance of free space, the
classical �eld momentum, de�ned by:

PR = ε0

∫
(V )

d3rE(r, t)×B(r, t) (49)

is a constant of motion during the free evolution of the classical �eld.
This quantity can be expressed in terms of the Fourier components of the

complex vector potential. One �nds

PR = 2ε0L
3
∑

`

ω` |A`|2 k` (50)

= 2ε0L
3
∑

`

ω`

(
A2

q` +A2
P`

)
k`

The �eld momentum appears as a sum of momenta associated with each
TPW mode. The momentum of a single mode is parallel to the wave vector
k` (radiation pressure e�ect) and to |A`|2, i.e. to the energy HR. More
precisely one has in a given mode HR = |P̂R|c, an expression reminiscent of
an ultra relativistic particle of zero rest mass.

The corresponding quantum operator is given by

P̂R = 2ε0L
3
∑

`

ω`

(
Â2

q` + Â2
p`

)
k`

= 2ε0L
3
∑

`

ω`

2

(
Â`Â

†
` + Â†

`Â`

)
k` (51)
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=
∑

`

~k`

2

(
â`â

†
` + â†`â`

)
=
∑

`

~k`â
†
`â`

the terms arising from the commutator of a` and â†` vanish when they are
summed over ` because for each mode ` there is another mode `′ such that
k` = −k`′ .

The TPW number states, de�ned as energy eigenstates, are therefore also
momentum eigenstates. Furthermore, one observes also an additive character
of the eigenvalues of the momentum operator. As a result photons de�ned in
the TPW mode labelled by ` have also a well de�ned value of the momentum,
which is ~k`.

This property is speci�c of the TPW basis. For example, on the SPW
basis de�ned in subsection (1.5.5), one �nds:

P̂ =
∑
m

~kmez(b̂
†
+mb̂−m + b̂†−mb̂+m) (52)

This expression only contains crossed terms and no photon number op-
erator: the standing wave number states |m± : n〉, de�ned as eigenstates of
the energy, are not eigenstates of the momentum operator, which is not a
function of the number operators b̂†±mb̂±m. As could be guessed intuitively, a
standing wave photon does not possess a well de�ned value of the momentum:
when one measures the momentum, there is a probability 0.5 to �nd ~k`, and
0.5 to �nd −~k`.

We can therefore state more generally that the properties of photons are
not intrinsic but depend on the basis of eigenmodes on which they are de�ned.

2.1.3 Angular momentum

One shows that, because of the rotational invariance of free space, the clas-
sical �eld angular momentum, de�ned by:

JR = ε0

∫
(V )

d3r r× (E(r, t)×B(r, t)) (53)

is a constant of motion. Using the formula of the double vector product and
an integration by parts in which one assumes that the �elds are zero on the
boundary of volume (V ), one �nds that:

JR = LR + SR (54)
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with

LR = ε0

∑
j=(x,y,z)

∫
d3rEj(r, t)(r×∇)Aj(r, t) (55)

SR = ε0

∫
d3rE(r, t)×A(r, t)

LR, which depends on the origin of coordinates, is named "orbital angular
momentum", whereas SR, which does not depend on it, is named "intrinsic
angular momentum", or "spin angular momentum". These names are only
given because of these analogies, but must not be taken too seriously.

a- Intrinsic angular momentum
SR can be decomposed on the TPW basis:

SR = iε0L
3
∑
n

ωn (An ×A∗
n −A∗

n ×An) . (56)

where the transverse vector An can be decomposed on the basis of polarisa-
tion vectors ~εn,s (s = 1, 2). Let us �rst assume that these vectors describe
linear polarizations, and are therefore real. One then gets

SR = 2iε0L
3
∑
n

ωn

(
A∗

n,1An,2 −An,1A∗
n,2

)
~εk. (57)

where ~εk is the unit vector in the direction of the wavevector k. From this
expression one derives the following expression for the intrinsic angular mo-
mentum operator on the linear TPW basis:

ŜR = i
∑
n

~
(
â†n,1ân,2 − ân,1â

†
n,2

)
~εk (58)

This expression only contains crossed terms and no photon number operator.
As a result, linearly polarized TPW photons have no well de�ned intrinsic
angular momentum, just like SPW photons have no well de�ned momentum.
When one measures the projection of the angular momentum on the propa-
gation axis, one will �nd ~ with a probability 0.5, and −~ with a probability
0.5.

Let us now use the decomposition of An on the basis of complex unit
vectors:

~~εn,± =
1√
2

(
~~εn,1 ±~~εn,2

)
, (59)
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which describe right and left handed circular polarizations. One �nds:

SR = 2ε0L
3
∑
n

ωn

(
A∗

n,+An,+ −A∗
n,−An,−

)
~εk. (60)

for the classical quantity, and

ŜR =
∑
n

~
(
â†n,+ân,+ − â†n,−ân,−

)
~εk (61)

for the operator. The expression is now diagonalized, which allows us to say
that circularly polarized TPW photons have a well de�ned intrinsic angu-
lar momentum directed along the direction of propagation, the projection
of ŜR on this axis being equal to ±~. This is reminiscent of the states
|J = 1,mJ = ±1〉 of a spin 1 particle, with the restriction that the state
|J = 1,mJ = 0〉 does not exist for such photons.

b- Orbital angular momentum
A simple calculation shows that the classical orbital angular momentum

of a given TPW is zero whatever its polarization: in the TPW basis the
orbital angular momentum expression is complicated and not very useful as
it contains only crossed terms. The expression of LR is greatly simpli�ed
if one makes the paraxial approximation, in which one only considers waves
that propagate in the vicinity of a given axis, say Oz. This occurs when
the �eld varies in the xOy plane on characteristic distances which are much
larger than the wavelength, so that di�raction plays only a minor role, and
the wave is "almost plane". The classical complex vector potential can then
be written as:

A(+)(r, t) =
∑

`

A`~ε`w`(x, y, z)e
ik`(z−ct) (62)

where ~ε` is the polarization unit vector and w`(x, y, z) a set of "slowly
varying envelopes", varying on distances large compared to the wavelength
λ = 2πc/ω`, which can be either the set of Hermite-Gauss modes or Laguerre-
Gauss modes.

Let us consider the set of Laguerre-Gauss modes TEMlm, which have the
following general form in cylindrical coordinates r, φ, z:

w`(x, y, z) = fl,m(r, z)eimφ (63)
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Figure 1: surfaces of equal phase of a Laguerre-Gauss mode of m = 3

where m is a relative integer, so that w` takes the same value for φ and
φ+ 2nπ. Calculating the integral of (55), one �nds:

LR = 2ε0L
3ez

∑
`

m|A`|2 (64)

and for the corresponding operator:

L̂R = ez

∑
`

m~â†`â` (65)

The number states de�ned on the Laguerre-Gauss basis have therefore, in
addition to the spin angular momentum linked to their polarization, a well-
de�ned orbital angular momentum equal to m~, related to the spatial shape
of the mode in which they are de�ned, and especially to the phase singularity
of the wavefront (helicoidal variation in eimθ of the mode amplitude, see �gure
(1)). The photon, which has several properties of a point-like particle, as we
will see later, is also able to "feel" the global spatial variation of the mode in
which it is de�ned. It appears in this case more like an elementary excitation
of this mode than like a usual elementary particle.
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2.2 Field observables

2.2.1 Expressions in the Schrôdinger representation

The operators Â
(+)

(r), Ê
(+)

(r) et B̂
(+)

(r) derived from the classical complex
�elds are given by:

Â
(+)

(r) =
∑

`

√
~

2~ε0L3ω`

â`~ε`e
ik`·r

Ê
(+)

(r) = i
∑

`

√
~ω`

2ε0L3
â`~ε`e

ik`·r (66)

B̂
(+)

(r) = i
∑

`

√
~

2ε0L3ω`

â`k` × ~ε`e
ik`·r

The quantity
√

~ω`/2ε0L3 entering in the expression of the electric �eld
operator will be labelled E`. It is the "elementary" electric �eld, yielding
a classical electromagnetic energy equal to the energy of a single photon
enclosed in volume (V ).

All these operators are time independent, the time dependence being
carried by the state vector (or density matrix) of the system. The Hermitian
operator associated with the classical real �eld is given by:

Ê(r) = Ê
(+)

(r) + Ê
(−)

(r) (67)

Ê
(−)

(r) being the hermitian conjugate of Ê
(+)

(r), and therefore a linear com-
bination of creation operators â†`. Analogous relations hold for the magnetic
�eld and the vector potential.

2.2.2 Expressions in the Heisenberg representation

It can be useful to work in the Heisenberg representation, where the time de-
pendence is now transferred to the operators, the state vector being constant
and given by the initial conditions. Let us �rst look for the expression of the
annihilation operator in the Heisenberg representation, âH,`(t). Its evolution
equation is:

i~
d

dt
âH,` = [âH,`, ĤR] = [âH,`, ~ω`a

†
H,`aH,`] (68)

= ~ω`aH,`
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One retrieves the temporal evolution of the corresponding classical mode:

âH,`(t) = â`e
−iω`t (69)

and for example the electric �eld operator can be written in the Heisenberg
representation as:

Ê
(+)

H (r, t) = i
∑

`

E`â`~ε`e
i(k`·r−ω`t) (70)

which is very close to the expression of the classical complex �eld decomposed
in TPWmodes. In the following, we will often forget the indexH, when there
is no ambiguity concerning the representation in which the quantum �eld is
described.

2.2.3 Single mode �eld; quadrature operators

Let us call Ê
(+)

` (r, t) the restriction of the complex �eld operator to a given
mode of index ` in the Heisenberg representation, and Ê(+)

` its projection on
the polarization vector ~ε`, which is:

Ê
(+)
` (r, t) = iE`â`e

−iφ` (71)

φ` being the well-known propagation phase ω`t − k` · r of a TPW. One has
the following commutation relations:

[Ê
(+)
` (r, t), Ê(+)

` (r′, t′)] = 0 ; [Ê
(+)
` (r, t), Ê(−)

` (r′, t′)] = E2
` e

−i(φ`−φ′
`) (72)

They concern non hermitian operators, which cannot be directly measured.
Let us now introduce the following hermitian operators:

Êq` = iE`(a` − a†`) Êp` = E`(a` + a†`) (73)

They are the quantum analog of the real and imaginary parts of the complex
electric �eld amplitude in mode `, which are classical canonical conjugate
quantities. In the quantum world, they are complementary quantities in
Bohr's meaning, analogous to the position and momentum observables of a
material particle. They allow us to write the real electric �eld observable as:

Ê`(r, t) = Êq` cosφ` + Êp` cosφ` (74)
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This observable is therefore alternatively equal to Êq` and Êp`, when φ` is
respectively equal to 0 and π/2 (mod. 2π). For this reason Êq` and Êp`

are called quadrature operators, and they obey the following commutation
relation:

[Êq`, Êp`] = 2iE2
` (75)

which imply the following Heisenberg inequality, valid for any state of the
quantum �eld:

∆Eq`∆Ep` ≥ E2
` (76)

As a result there is no �eld state which is simultaneously eigenstate of Êq`

and Êp`, and therefore no state which is eigenstate of the electric �eld at
all points and all times: whatever the quantum state of the radiation �eld,
there always exist points in space and instants in time where the electric
�eld is a�ected by quantum �uctuations of non zero values. Moreover, if
the electric �eld has vanishingly small �uctuations at a given point and a
given time, inequality (76) tells us that it will undergo strong �uctuations a
quarter wavelength further, or a quarter period later.

2.3 Photodetection operators

Electric �elds in the optical region oscillate 1015 times per second, and there
is so far no simple instrument which is able to follow such a fast oscillation.
The "observable" Ê`(r, t) is actually not observable in the present state of
the technology, and the existing photodetectors have only access to quantities
which are averaged over many optical cycles.

2.3.1 Energy detectors

They belong to the category of bolometers, which measure by very sensitive
techniques the small temperature increase induced by the absorption of inci-
dent light. They measure therefore the energy of the �eld, and are described
more precisely by the observable:

Ĥdetected =
∑

`′

~ω`′ â
†
`′ â`′ (77)

where the sum spans over the modes `′ which are actually absorbed in the
bolometer.
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2.3.2 Photodetectors

Photomultipliers and semiconductor photodiodes directly "transform pho-
tons into electrons". They are based on a photo-ionization process induced
by the incident light and creating free electrons (or free electron-hole pairs),
which are then measured as a photocurrent iph. The full quantum theory
of such a detector was �rst made by Glauber. Using a perturbation theory
at the lowest order, he showed that, if |Ψ〉 is the quantum state of the �eld
incident on the detector, the mean photocurrent is given by:

iph =

∫
SD

d2r
∑

`

R`〈Ψ|Ê(−)
` (r, t)Ê(+)

` (r, t)|Ψ〉 (78)

where the integral spans over the photodetector surface SD and R` is the sen-
sitivity factor of the detector to the mode `. This expression gives the mean
value of the photocurrent when there are only a few photons which create
well separated "clicks" (photon counting regime) as well as when the number
of incident photons is large and the clicks overlap, so that the photocurrent
varies continuously. It gives only the mean value of the photocurrent, but
no information about the statistics of clicks in the �rst case, nor the value of
the photocurrent quantum �uctuations in the second case.

If the detector has a small area S centered on rD, is photosensitive only
within a small range of frequencies around a value ω0, is formed of many
absorbers and contains no traps for the created free charges, so that all the
incident photons are �nally absorbed and create a current (unity quantum
e�ciency), which is actually the case for some photodiodes in the market,
one can de�ne a photocurrent operator îph given by:

îph =
2qε0cS

~ω0

Ê(−)(rD, t)Ê
(+)(rD, t) (79)

which allows us to determine not only the mean value of the photocurrent,
but also its higher statistical moments. It is the quantum analog of the
quantity |E(+)(rD, t)|2 which is measured in classical optics.

2.3.3 Double photodetection

In order to evaluate the presence of correlations in the radiation �eld, ex-
periments in quantum optics often rely on coincidence measurements of
photo-counts, or intensity correlation measurements given by the product
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of photocurrents, measured by two photodetectors placed at points rD and
r′D. Glauber has shown that the mean coincidence rate, or correlation,
w(rD, t; r′D, t

′) is given by:

w(rD, t; r′D, t
′) = 〈Ψ|Ê(−)(rD, t)Ê

(−)(r′D, t
′)Ê(+)(rD, t)Ê

(+)
` (r′D, t

′)|Ψ〉 (80)

Note that the product of �eld operators in (80) contains products of two
annihilation operators. Its mean value is therefore zero in a single photon
state: a single photon cannot be detected at two di�erent points, a property
which gives to the photon the status of a point-like particle.

2.4 Input-output relations for the �eld operators

2.4.1 General remarks

The general scheme of an optical experiment is the following: one has input
light beams coming from sources such as lasers, which are processed and
mixed by an optical set-up, containing linear and nonlinear elements, which
produces output beams, on which one can put photodetectors which extract
the relevant information. Let us label i the di�erent measured modes at
the output. The overall e�ect of the optical system is that the electric �eld
operator of the ith output mode Ê(+)

i,out is a function of all the input �eld
operators and of their hermitian conjugates Ê(+)

1,in, Ê
(−)
1,in, Ê

(+)
2,in, Ê

(−)
2,out, .... Such

an input-output operatorial relation can take many di�erent forms according
to the optical set-up which is used, but not any form, because Ê(+)

i,out must
be indeed an electric �eld operator, and therefore obey the commutation
relation [Ê

(+)
i,out, Ê

(−)
j,out] = iE2

` δi,j: the input-output relations must be canonical
i.e. preserve the commutation relations of free �eld operators.

2.4.2 Free propagation

The simplest case is when the �eld propagates freely from one point rin to
another one rout. In the basis of TPW modes, the input-output relation
between the �eld operators at these two points is then:

Ê
(+)
i,out = eiφÊ

(+)
i,in (81)

where the propagation phase is equation φ = ω`(t1− t2)−k` · (r1− r2). This
relation obviously preserves the commutation relation.
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2.4.3 Beamsplitter

It is the simplest optical device allowing us to mix two modes 1 and 2 of the
�eld of identical frequencies, polarization and transverse spatial variations.
If one transposes the classical beamsplitter relations to the corresponding
complex �eld operators, one gets:

Ê
(+)
1,out = tÊ

(+)
1,in + rÊ

(+)
2,in (82)

Ê
(+)
2,out = −rÊ(+)

1,in + tÊ
(+)
2,in

where r and t are real re�ection and transmission amplitude coe�cients ful-
�lling r2 + t2 = 1. The minus sign in front of r in the second equation is
necessary to have energy conservation between the two input beams and the
two output beams. It is easy to check that relations (82) preserve the com-
mutation relations. As ω`, and therefore E`, is the same for all the modes,
one has the same relation for the annihilation operators:

â1,out = tâ1,in + râ2,in (83)
â2,out = −râ1,in + tâ2,in

It is easy to check that this relation preserves the commutation relations.

2.4.4 Two-wave parametric mixing

Let us now consider a nonlinear crystal having a non-negligible χ(2) coe�cient
pumped by an intense laser at frequency ω0. It will couple by parametric
interaction signal and idler modes, labelled 1 and 2, of frequencies ω1 and
ω2 such that ω1 + ω2 = ω0. If one neglects pump depletion, the propaga-
tion equations in the nonlinear crystal lead to a simple expression connecting
the output signal and idler classical �elds to the input ones, which can be
extended to the corresponding quantum operators. The expression is partic-
ularly simple when one considers the case of perfect phase matching and of
a purely imaginary complex pump �eld:

Ê
(+)
1,out = Ê

(+)
1,in coshS + Ê

(−)
2,inβ sinhS (84)

Ê
(+)
2,out = Ê

(−)
1,in

sinhS

β
+ Ê

(+)
2,in coshS

where S is a parameter proportional to χ(2), the pump amplitude and the
crystal length, and β =

√
n2ω1/n1ω2 (n1, n2 : optical index of the crystal
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for the signal and idler modes). Note that in this case Ê(+)
1,out is coupled

to the hermitian conjugate operator Ê(−)
2,in. It is simple to check �rst that

this transformation does not conserve the total energy of the signal and idler
modes: there is some amount of positive or negative energy transfert from the
pump mode to these modes, and secondly that these transformations conserve
the commutation relations (having in mind that in a dielectric medium the
quantity E` is equal to

√
~ω`/2n`ε0L3, n` being the optical index of the

medium for the mode `). Relations (84) have a simpler expression when they
are expressed in terms of the corresponding annihilation operators:

â1,out = â1,in coshS + â†2,in sinhS (85)
â2,out = â†1,in sinhS + â2,in coshS

2.4.5 Symplectic transformations

Expressions (81), (83) and (85) describe transformations which belong to an
important group, called the symplectic group, which is made of all the input-
output relations which are linear in the annihilation and creation operators
and conserve the commutation relations. These transformations correspond
to a Hamiltonian evolution in which the hamiltonian is bilinear with respect
to the annihilation and creation operators of the di�erent modes. It can be
shown that any symplectic transformation can be written as a succession of
elementary transformations of the three classes given in subsections (2.4.2),
(2.4.3) and (2.4.4).

The sub-group consisting of transformations which, in addition to the
commutators, conserve the energy, like (81) and (83), is called the group of
passive symplectic transformations. Passive symplectic transformations can
always be seen as a more or less complicated succession of free propagation
and beamsplitter transformations.

2.5 Balanced homodyne detection

Balanced homodyne detection is a technique which is often used in quantum
optics, because it allows one to measure the quadrature operators, and also
to have access to all the properties of a quantum state of light through the
technique of "quantum tomography".
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Figure 2: Balance homodyne detection set-up

2.5.1 Description

The set-up is given in �gure (2): the �eld to measure, in quantum state
|Ψ〉 of the input mode ` = 1, is mixed with a single mode local oscillator,
supposed to be in a coherent state |Aeiφ〉 of a given input mode ` = 2
(see section (4.2.2)), on a beamsplitter of energy transmission and re�ection
coe�cients 50%. The two output beams, labelled (1) and (2), are detected
by two perfect photodetectors, and the two photocurrents are subtracted.
The resulting photocurrent operator, expressed in terms of photon numbers,
N̂−, is:

N̂− = â†1,outâ1,out − â†2,outâ2,out (86)
= â†1,inâ2,in + â†2,inâ1,in

using equations (83) with r = t = 1/
√

2. In this expression, â1,out, â2,out, â1,in

and â2,in are the annihilation operators of respectively the two output and
the two input modes on the beamsplitter. Note that this expression is valid
only when the input modes (1) and (2) have exactly the same spatial and
temporal dependence, in phase and amplitude, on the mixing beamsplitter,
in which case they are said to be exactly "mode-matched".

2.5.2 Mean value and variance

The mean value of the detected signal N̂− in state |Ψ〉 ⊗ |Aeiφ〉 is

〈N̂−〉 = A〈Ψ|â†1,ine
iφ + â1,ine

−iφ|Ψ〉 (87)
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It gives a quantity proportional to the mean value of the operator x̂φ =

â†1,ine
iφ + â1,ine

−iφ, which is proportional to the quadrature operators Êq` and
Êp` when the local oscillator phase (that one can tune by scanning the optical
length of beam 2) is respectively 0 and π/2. These two hermitian operators
are therefore not only observables in the mathematical meaning, but corre-
spond to quantities the mean value of which can actually be measured. As
for the variances, one easily shows that:

∆2N− = A2∆2xφ + 〈Ψ|â†1,inâ1,in|Ψ〉 (88)

If the mean photon number in the mode to measure is much smaller than
the photon number A2 in the local oscillator mode, then

∆2N− ≈ A2∆2xφ (89)

A noise measurement in a homodyne detection set-up gives also, within this
approximation, the quantum �uctuations of the �eld quadratures, ampli�ed
by the factor A2, which can be very large. These �uctuations are therefore
easily measurable, even if the mode to measure is in the vacuum state or
contain only a few photons.

2.5.3 Quantum tomography

If one records in a computer memory the instantaneous �uctuations of the
di�erence photocurrent N−, and therefore of the observable x̂φ, on a su�-
ciently long time interval, one can determine the statistical distribution of
this �uctuating quantity and experimentally evaluate the quantity Pφ(x),
probability of measuring a given value x for the quadrature x̂φ. Such an
operation can be repeated for many successive values of the local oscillator
phase φ spanning the range (0, π). The information contained in the series of
functions Pφ(x), φ ∈ [0, π] is enough to completely determine the exact quan-
tum state of the incident light. For example, the following expression, called
"inverse Radon transform", which can be numerically evaluated, gives the
Wigner function W (q, p) of the incident quantum state (see section (3.1.2)):

W (q, p) =

∫ +∞

−∞
dx′
∫ +∞

−∞
|k|dk

∫ π

0

dφPφ(x
′)ei2πk(cos φ+p sin φ−x′) (90)

This technique of reconstructing the quantum state from its di�erent "sec-
tions" measured by balanced homodyne detection, is called "quantum to-
mography".
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3 CHARACTERIZATION OF THE QUANTUM

STATES OF LIGHT

To simplify the expressions, we will assume that the quantum state of the
radiation �eld evolves in a space with a �nite number N of modes, which can
be very large.

3.1 General descriptions

3.1.1 State vector

As the number states |n1, ..., , nN〉 form a basis of the Hilbert space of the
quantum radiation states vectors, the most general state vector of light |Ψ〉
can be written as

|Ψ〉 =
∞∑

n1=0

...
∞∑

nN=0

cn1,...,nN
|n1, ..., , nN〉 (91)

constrained by the normalization condition 〈Ψ|Ψ〉 = 1. The number of com-
plex numbers cn1,...,nN

, and therefore of di�erent possible quantum states,
is gigantic: each number n` spans over an in�nite number of values, and
there is a big number of such sums. Let us recall that a classical radiation
�eld is fully characterized when one knows the series of N complex numbers
A1, ...,AN . This means that the diversity of physical situations in quantum
optics is prodigious. They have just started to be studied, and situations
which are farther and farther from the classical radiation �eld are regularly
found. There is no doubt that much more remains to be found.

Let us calculate the mean value of the complex electric �eld in the state
(91). It is given by:

〈Ψ|Ê(+)(r, t)|Ψ〉 = i

N∑
`=1

E`α`e
−i(ω`t−k`·r) (92)

where the complex quantity α` is given by:

α` =
∞∑

n1=0

...
∞∑

nN=0

c∗n1,...,n`−1,...,nN
cn1,...,n`,...,nN

(93)
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Expression (92) is the same as the classical expressions (11,13): the diversity
of quantum states cannot be seen on the mean values of the �elds. It is
only on the variances of the di�erent observables, on the correlation between
measurements, and more generally on the higher moments of the quantum
probability distribution, that non-classical e�ects occur. This is what will be
studied in the following.

3.1.2 Density matrix

In many physical situations, either one does not completely master the initial
conditions, so that the system has some amount of classical �uctuations, or
one observes only a part of a big system. In both cases, the physical system
is said to be in a mixed state instead of a pure state. To describe it, one must
use the density matrix ρ, which is a hermitian positive operator acting on
the Hilbert state of state vectors, and submitted to the constraint Trρ = 1.
The diversity of such density matrices is even more colossal than the one of
state vectors.

The parameter which characterizes the amount of "classical noise" in the
system is the purity P = trρ2, a quantity which is always between 0 and 1:
when P = 1, the state is pure and can be described by a vector like (91).
It contains only quantum �uctuations. When P < 1 the state is mixed and
has also some amount of classical �uctuations. The minimum value of P can
be shown to be equal to the inverse of the dimension of the Hilbert space in
which the state lives (1/2 for a qubit for example). P can therefore be zero
in a Hilbert space of in�nite dimensions.

3.1.3 Wigner function

a-De�nitions
In quantum optics, the density matrix contains an in�nite number of

elements and is di�cult to manipulate. One often uses instead a quasi-
probability distribution function, which is a real function in phase space,
depending on 2N real variables, and which also completely characterizes the
system. There are di�erent ones, with di�erent interesting properties. We
will focus here on the Wigner function, because it is the one which is the
most adapted to the description of the properties of quadrature operators,
and therefore of the homodyne measurements described in subsection (2.5).

Let us �rst introduce the displacement operator, also called Weyl operator.
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It is a unitary operator that depends on N complex variables λ1, ..., λN and
is given by:

D̂(λ1, ..., λN) = e
P

`(λ`â
†
`−λ∗

` â`) (94)

If one uses the real and imaginary parts of λ`, λ` = u` + iv`, this operator
can be also written in terms of the 2N real variables (u`, v`):

D̂(u1, v1, ..., uN , vN) = e−i
P

`(u`q̂`+v`p̂`) (95)

where the hermitian operators q̂` and p̂`, which are given by:

q̂` = i(â` − â†`) ; q̂` = â` + â†` (96)

are the dimensionless versions of the �eld quadrature operators introduced in
subsection (2.2.3), that we will also call quadrature operators. They are con-
jugate quantum operators which obey the following commutation relations
and Heisenberg inequality1:

[q̂`, p̂`] = 2i ; ∆q`∆p` ≥ 1 (97)

D̂ is the operator which "displaces" the annihilation and quadrature op-
erators:

D̂â`D̂
† = â` + λ` ; D̂p̂`D̂

† = p̂` + u` ; D̂q̂`D̂
† = q̂` + v` (98)

The Wigner function is nothing else than the Fourier transform of the
mean value of the displacement operator. It can be written either as a
function of N complex variables α ≡ (α1...αN) or of 2N real variables
R ≡ (q1, p1...qN , pN) as:

W (α) =
1

π2N

∫
d2λ1d

2λNTr
[
ρD̂(λ1...λN)

]
e

P
`(λ`α

∗
`−λ∗

` α`) (99)

W (R) =
1

(2π)2N

∫
du1dv1...duNdvN

Tr
[
ρD̂(u1, v1...uN , vN)

]
ei

P
`(u`q`+v`p`) (100)

Let us mention that the de�nitions (99) can also be used by replacing the
1q̂` and p̂` di�er formally from the usual operators position and momentum of a particle,

x̂ and p̂, by a factor
√

2/~. Other scaling factors can be found in the literature.
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density matrix ρ by any hermitian operator Â. One de�nes in such a way the
Wigner function WÂ(α), or WÂ(R), associated with the observable Â. One
�nds easily that:

W1̂`
(R) =

(
1

4π

)N

; Wq̂`
(R) =

(
1

4π

)N

q`; Wp̂`
(R) =

(
1

4π

)N

p` (101)

where 1̂` is the identity operator in mode `.

b- Properties
Most of them are the consequences of an important theorem allowing us

to write the trace of the product of two observables in terms of the overlap
of their Wigner functions:

TrÂB̂ = (4π)N

∫
dRWÂ(R)WB̂(R) (102)

One deduces that:

• 1) If one takes Â = ρ, B̂ = 1̂`, one �nds that the Wigner function of a
quantum state is a normalized function:∫

dαW (α) =

∫
dRW (R) = 1 (103)

• 2) If one takes Â = ρ1, B̂ = ρ2, one �nds an expression for the vector
product Trρ1ρ2 between the two states (equal to |〈ψ1|ψ2〉|2 in the case
of two pure states):

Trρ1ρ2 = (4π)N

∫
dRW1(R)W2(R) (104)

This relation has an important consequence: when two pure states are
orthogonal, then 〈ψ1|ψ2〉 = 0, and therefore the overlap integral be-
tween the two Wigner functions is zero. This can occur only when
some part of these functions is negative. A Wigner function may there-
fore take either positive or negative values.

• 3) If one takes Â = ρ, B̂ = ρ, one �nds an expression of the purity of
the state in function of its Wigner function:

P = Trρ2 = (4π)N

∫
dR(W (R))2 (105)
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• 4) If one takes Â = ρ, B̂ = q̂` or B̂ = p̂`, one �nds that the mean
value of the quadrature operators is the integral of the corresponding
classical quantity weighted by the Wigner function of the state:

〈q̂`〉 =

∫
dRq`W (R) 〈p̂`〉 =

∫
dRp`W (R) (106)

The same kind of relation holds when one wants to calculate the mean
value of â` in terms of an integral of the complex number α` weighted
by W (α).
More generally, one can show that the mean value of any symmetrized
product of n1 operators q̂` and n2 operators p̂`, that we will call S((q̂`)

n1(p̂`)
n2)

2, can be written as an integral over dR of the same function of the
corresponding classical quantities qn1

` pn1
` weighted by the Wigner func-

tion W (R), and that the mean value of the symmetrized operator
S(ân1

` (â†`)
n2) can be written as an integral over dα of the same func-

tion of the corresponding classical quantities αn1
` α

∗n1
` weighted by the

Wigner function W (α). This property induces us to interpret the
Wigner functionW (R) as a probability density for the quantities (q`, p`).
But it cannot be a classical probability density function, because the
variables q` and p` are complementary in Bohr's meaning. The corre-
sponding operators do not commute, implying the Heisenberg inequal-
ity (76), and there is no quantum state in which these two quantities are
perfectly de�ned simultaneously. The Wigner function has necessarily
a �nite extension in phase space3. In addition, the Wigner function
is not a well-behaved probability function because, as we have seen, it
may take negative values. For this reason, it is called a quasi-probability
density function.

• 5) The relation (106) applied to the operator q̂1, for example, can be
rewritten as:

〈q̂1〉 =

∫
dqqPq1(q) (107)

2The symmetrized operator S((q̂`)n1(p̂`)n2) is obtained by summing all the possible
terms equal to the product of n1 operators q̂` and n2 operators q̂` in any order and
dividing the result by the number of terms. Other quasi-probability functions allow us to
calculate products of operators in other kinds of order. Let us note that, with the help
of the commutation relations, one can transform any operator into a sum of symmetrized
terms.

3There is an analogous limitation when one wants to describe a phenomenon simultane-
ously in the time and in the frequency domain, which are also complementary quantities.
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where Pq1(q) is the following quantity:

Pq1(q) =

∫
dp1dq2dp2...dpNdqNW (q, p1, q1, p2, ...qN , pN) (108)

This quantity, which can be shown to be positive, appears in relation
(107) as the true probability to �nd the value q when one measures
the operator q̂1. It is actually equal to |ψ(q)|2 in the case where the
state is described by a wavefunction ψ(q). Equation (108) shows that
it is obtained by integrating the Wigner function over all the variables
except the one we are interested in.

• 6) Let us consider a symplectic input-output relation for the �elds
(see subsection (2.4.5). This means that the output operators depend
linearly on the input operators:

âout
` =

∑
`′

(
A`′

` â
in
`′ +B`′

`′ â
in†
`′

)
(109)

and that the transformations (109) preserve the commutation relations.
One can show that the Wigner function describing the output state of
the system can be simply expressed in terms of the Wigner function
describing its input state:

W out(α) = W in

(
α1 =

∑
`′

(
A`′

1 α`′ +B`′

1 α
∗
`′

)
...αN =

∑
`′

(
A`′

Nα`′ +B`′

Nα
∗
`′

))
(110)

In other words, in order to obtain the output Wigner function, one
takes the input Wigner function and replaces its variables by new values
equal to the initial ones transformed by the classical transformation of
the �eld variables. In some way the Wigner distribution behaves as a
classical density distribution in a classical input-output relation. But
this simple behaviour is only valid for the symplectic transformations.

3.2 The ground state of the radiation �eld

It is the state containing zero photons in all modes, |` = 1 : 0〉 ⊗ ..|` : 0〉 ⊗ ..,
noted |0〉. Usually called the vacuum, it should be called the obscurity,
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because it describes the state of light in which all the light sources have been
switched o�. It is easy to show that it has the following properties:

〈0|Ê(r, t)|0〉 = 0 ; 〈0|(Ê(r, t))2|0〉 =
∑

`

E2
` (111)

As expected, the mean value of the electric �eld is zero in vacuum, but its
variance is non zero. We �nd here a new striking property of the quantum
�eld, distinct from the existence of photons, which is the existence of vacuum
�uctuations. They are nothing else than the zero point �uctuations of any
quantum harmonic oscillator and give rise to a non-zero energy for the vac-
uum. Though these �uctuations exist in the ground state of the system, and
therefore cannot transfer energy to any detector, they have many observable
properties:

• As the Stark shift of atomic energy levels is proportional to the square
of the applied electric �eld, vacuum �uctuations induce a non zero shift
of the energy levels of any atom. In hydrogen, this shift turns out to
be di�erent in the 2S1/2 and 2P1/2 levels, which should be degenerate
according to the Dirac theory of hydrogen. The small energy di�erence
between these two levels, of pure quantum electrodynamical origin, has
been observed by Lamb and Retherford, and is now called the Lamb
shift. Recent experiments have given a relative agreement with the
theoretical value of 10−6, limited by the precision of the knowledge of
the proton properties.

• The vacuum has also �uctuations of its magnetic �eld, which induce
a random cyclotron motion of the position of an electron, and also
�uctuations of its magnetic moment. These �uctuations a�ect the value
of the gyromagnetic factor g of the electron, which should be equal to
2 according to the Dirac theory of hydrogen. The departure from the
value 2, of the order of 10−3, has been measured for the �rst time by
Kusch. It has been more recently measured with a great accuracy, and
is equal to the value calculated by quantum electrodynamics with a
relative uncertainty of 10−8.

• The vacuum has also �uctuations of its momentum, which may induce
a random motion of objects put in vacuum and scattering the electro-
magnetic �eld. For symmetry reasons, the e�ect is zero on a plane
mirror, for example, but it is non zero for two parallel mirrors, because
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the structure of modes is di�erent between the mirrors and outside.
The net e�ect is an attractive force between the mirrors, which has
also been measured: this is the Casimir e�ect.

If one calculates the value of vacuum �uctuations given in (111), one �nds
a divergence due to the high frequency part of the radiation �eld spectrum.
This problem has been solved by using renormalization procedures, which
have been introduced by Schwinger, Feynman and Tomonaga. We will not
use it in this course, as we will deal mainly with the properties of a �nite
amount of modes which exclude this high frequency divergence.

The Wigner function of vacuum is

W (α) =

(
2

π

)N

e−2|α|2 ; W (R) =

(
1

2π

)N

e−|R|2/2 (112)

where |α|2 =
∑

` |α`|2, |R|2 =
∑

`(q
2
` + p2

`). It has a Gaussian shape of root
mean square value ∆q` = ∆p` = 1. The vacuum is therefore a minimum
state for the Heisenberg relation (97), with equal �uctuations on the two
quadrature operators.

3.3 Gaussian states

3.3.1 De�nition

They are states which are characterized by a Wigner function of gaussian
shape, as for example the vacuum. They play an important role in quantum
optics because they can be experimentally produced, and also because they
have the following important property: a pure quantum state the Wigner
function of which is positive at all points is Gaussian (Hudson-Piquet theo-
rem). For such states therefore, the quasi-probability distribution becomes a
well-behaved probability distribution, and they are the only quantum pure
states to have this property.

They have the following general expression:

W (R) =

(
1

2π

)N
1√
Detσ

exp

(
−(

2N∑
i,j=1

(R−R0)iσ
−1
ij (R−R0)j)/2

)
(113)

whereRi is the ith component of the pointRi in the phase space (q1, p1, ..., qN , pN).
A Gaussian state is therefore characterized by two quantities, the point in
phase space R0, and the 2N × 2N matrix σ.
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The Wigner function of the vacuum corresponds to the case where R is
zero and σ is the identity.

3.3.2 Properties

a-Interpretation of R0 and σ
>From the properties given in subsection(3.1.3), one easily shows that:

(R0)i = 〈R̂i〉 (114)

σij =
1

2
〈R̂iR̂j + R̂jR̂i〉 − 〈R̂i〉〈R̂j〉 (115)

R0 is therefore the mean position in phase space, whereas σ is the covari-
ance matrix, which contains all the variances and correlations between the
quadrature components of the di�erent modes. All these quantities can be
experimentally measured using N homodyne detections.

b-Generalization of the Heisenberg inequality
In the single mode case, the variances are constrained by the Heisenberg

inequality. This property extends to the N mode case: one can show that,
in order to describe a physical quantum state, the eigenvalues of the ma-
trix σ + iΩ must be positive or zero, Ω being the matrix of commutators
Ωij = [R̂i, R̂j]/2i.

c-Purity
The purity P = Trρ2 of the quantum state has a simple expression,

depending only on the covariance matrix σ:

P =
1√
Detσ

(116)

For example in the single mode case, a pure Gaussian state has a covariance
matrix of determinant 1: it is therefore a minimum state with respect to the
Heisenberg inequality.

d-Symplectic transforms
Because of their linear character, they transform a quadratic form of the

variables qi, pi into another quadratic form. Using property 6 of subsection

39



(3.1.3) , this implies that the Gaussian character of a quantum state is pre-
served by symplectic transforms. In particular a symplectic transformation
transforms the vacuum state in a Gaussian state. Therefore any hamiltonian
interaction which is bilinear in the di�erent creation and annihilation oper-
ators produces Gaussian states from vacuum.

e-Williamson theorem
For any Gaussian state, there exists a symplectic transformation which

transforms the Gaussian state into another one characterized by a diagonal
covariance matrix, i.e. for which there is no correlation between the quadra-
ture operators. In addition, the diagonal elements can be made be equal
for the two quadratures of each given mode. The N variances obtained in
such a way are called the "symplectic eigenvalues" of the Gaussian state,
and characterize it in an intrinsic way. The generalized Heisenberg inequal-
ity (property a) requires that these N symplectic eigenvalues are not smaller
than 1. The purity P is then nothing else than the inverse of the product of
theseN quantities. The purity is an invariant through symplectic transforms.

3.4 Classical and non-classical states of light

3.4.1 The semi-classical approach of quantum optics

Optical phenomena can be described by a theory which treats matter as a
quantum object, having discrete energy levels, and light as a classical object,
obeying the Maxwell equations, possibly a�ected by classical �uctuations
when one wants to describe optical sources of �nite temporal and spatial
coherence. This approach is called the semi-classical theory of light matter
interaction, and is remarkably successful: it is for example able to account for
the photo-electric e�ect and the Compton e�ect, which are often considered
as being a proof of the quantum character of light. Photons can be invoked
to explain such phenomena, as Einstein and Compton did, but it was quickly
realized by Dirac and Schrödinger that a theory involving classical �elds and
quantum atoms could explain them as well, just like the re�ection of light on a
mirror can be seen as particles bouncing on its surface, or waves obeying some
boundary conditions. The semi-classical approach leads to the well-known
Optical Bloch equations, which are able to explain a huge quantity of physical
phenomena in quantum optics. They are able to account not only for the
mean values of the measured quantities, but also for their �uctuations: in this
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approach, when a weak classical single mode beam of light with a constant
amplitude and phase interacts with a quantum photodetector, the sudden
"clicks" recorded by the photodetector are not attributed to the arrival of a
photon, but to the instantaneous character of the quantum jump undergone
by an electron in the photodetector in presence of a constant interaction.

Some physicists have even questioned the practical utility of the quantum
theory of light and claimed that all optical phenomena could be accounted
for by a semi-classical theory. One now knows that it is not the case, and
that many phenomena can only be explained by the full quantum theory of
light and matter. We will call non-classical states the states of light which
lead to predictions which cannot be made within the semi-classical theory,
and classical states the others. Experimentally speaking, it is only in 1977,
that physicists4 were able to produce a light state exhibiting "photon anti-
bunching", which had no semi-classical explanation. Their experiment was
the �rst to show in an unquestionable way that the quantum theory of light
was actually indispensable5.

3.4.2 Simon criterion of non-classicality

Using the semi-classical theory, the photodetection process has the follow-
ing property: if one shines a perfectly constant classical light beam on a
photodetector, the resulting photocurrent has random �uctuations which are
due to the statistical character of the quantum jumps. The corresponding
photocurrent �uctuations, also called "shot noise", are given by:

∆i =
√

2q < i > δν (117)

where δν is the detector bandwidth and < i > the mean photocurrent. The
shot noise can also be simply written in photon units N (energy stored during
the measurement time divided by ~ω):

∆N =
√
< N > (118)

meaning that the occurrence of clicks in the photodetector is a Poisson pro-
cess. If the beam is not perfectly coherent and has amplitude �uctuations,
the photocurrent noise is of course larger than this value. The value (117)

4H.J. Kimble, M. Dagenais, L. Mandel, Phys. Rev. Letters 39 691 (1977).
5A detailed account of bunching and anti-bunching e�ects can be found in A. Browaeys'

lectures.

41



or (118) is usually called the standard quantum limit of photocurrent �uctu-
ations6.

Using the full quantum theory of photodetection (section(2.3)), one can
have quite di�erent situations: for example, a number state, eigenstate of
N̂ , incident on a photodetector, will yield a perfectly constant photocurrent,
without any �uctuations. The limit between the semi-classical world and the
pure quantum world is therefore set by the value of photocurrent �uctuations:
we will call "non-classical" a given state of light if there is a possibility of
recording a photocurrent �uctuation on this state which is smaller than the
standard quantum limit (117) or (118).

Using this de�nition, it is easy to see that a classical multimode state
(for which all the recorded photocurrent �uctuations are larger than the
standard quantum limit) remains classical when it is submitted to any linear
input-output transformation conserving the energy (the so-called "passive
symplectic transformations"). Simon stated then the following more precise
criterion of non-classicality:

A state of light is called non-classical when there exists a passive symplec-
tic transformation which transforms it into a state in which the variance of
a quadrature of at least one mode is below the standard quantum limit.

He showed that this criterion could be expressed in a simple mathematical
way7:

A state is non-classical when the smallest of the covariance matrix eigen-
values is smaller than 1.

6It is indeed a quantum limit, but it is due to the quantum character of the detector,
not to the quantum character of light.

7R. Simon, N. Mukunda, B. Dutta, Phys RevA 49 1567 (1994).
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4 SINGLE-MODE SYSTEMS

4.1 General remarks

4.1.1 De�nition

It may happen in some situations that the state of the system expands only
over the number states |n1〉 ⊗ ...⊗ |n`〉... with n1 = n2 = ... = n`−1 = n`+1 =
... = 0, n` being any integer. This occurs for example when one uses single
mode lasers, which "�ll" one mode with many photons, or when a resonant
cavity selects a given mode. Though the state still belongs to the general
Hilbert space de�ned on all the modes, and for example is characterized by
non zero vacuum �uctuations in all the modes, we will call this kind of state
a "single-mode state", and write it in the simpli�ed way, omitting the zeros
in all the other modes:

|Ψ〉 =
∞∑

n`=0

cn`
|n`〉 (119)

We will here focus our attention on "single mode operators", i.e. to the
restrictions of the observables to the single-mode Hilbert space, such as:

Ê
(+)
` (r, t) = iE`â`e

−i(ω`t−k`·r)

Êq` = iE`

(
â` − â†`

)
Êp` = E`

(
â` + â†`

)
(120)

q̂` = i(â` − â†`) p̂` = â` + â†`

4.1.2 Fresnel, or phasor, representation

TheWigner function associated with such systems is a real function of a single
complex parameter α, or of two real parameters q, p. It can be represented
as a 3D object in the space q, p,W . For example, �gure (3) gives the Wigner
function of a coherent state, which is a Gaussian state that we will study
in subsection (4.2.2). Its maximum value gives R0, i.e. the mean �eld, and
the width of the q and p sections gives the r.m.s value of the corresponding
quadrature operators. For any Gaussian state, the section of the Wigner
function by a vertical plane making an angle φ with the q axis gives the
probability distribution Pφ(x) of the operator x̂φ = â†eiφ + âe−iφ that can be
measured by the homodyne technique described in subsection(2.5.3).
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Figure 3: Wigner function of the single mode coherent state

In order to avoid manipulating 3D objects, one usually prefers to project
the Wigner function on the q, p plane, and to only draw the point A of max-
imum W and the curve of constant quasi-probability W (q, p) = e−1/2: the
point A gives the mean complex �eld, within the propagation and scaling
factor E`e

−i(ω`t−k`·r and the size of the curve gives an idea of the �eld �uctua-
tions: it is the Fresnel, or phasor representation of the single-mode state (see
�gure (4)). Whereas the cartesian coordinates in the q, p plane are related to
the quadratures of the single mode �eld, the polar coordinates in this plane
are related to its amplitude and to its phase.

4.2 A gallery of remarkable states

4.2.1 Number, or Fock, state

It is an eigenstate of the hamiltonian, and therefore gives stationary values
to all observed quantities, including the electric �eld Ê`(r , t). More precisely,
one �nds that in a number state:

〈Ê(+)
` (r, t)〉 = 0 ∆Ê

(+)
` (r, t) = ∆Êq` = ∆Êp` =

√
2n+ 1E` (121)

The mean �eld is zero, and the variances can be very far from their minimum
value when n is large. Such a state is somehow similar to the state emitted
by thermal sources (see subsection(4.2.3)) which has a random phase and
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q

p

A

0

Figure 4: Simple phasor representation of a quantum state: the vector OA
is related to the mean value of the complex �eld; the shaded area gives the
region where the Wigner function takes signi�cant values (W (q, p) > e−1/2).

large quadrature �uctuations. But, in contrast to the thermal �eld, the �uc-
tuations on the two quadratures are anti-correlated in such a way that such
that there are no �uctuations on the �eld intensity Ê2

p`+Ê
2
p` = 2E2

` (2â†â+1),
which is proportional to the photon number operator.

Number states are simple to handle by theorists, but not by experimen-
talists, except for the vacuum state. The techniques of producing single
photon states, described in A. Browaeys' lectures, are now well mastered.
Some experiments have been able to produce number states with a few pho-
tons, mainly by conditional techniques. Nobody is so far able to produce a
"macroscopic" number state with a large n value.

The Wigner function of the number state |n〉 is :

Wn(q, p) =
1

π
(−1)nLn(p2 + q2)e−(p2+q2)/2 (122)

Ln(x) being the Laguerre polynomial of order n. For example, L0(x) =
1, L1(x) = 1− x. Figure (5) shows the Wigner function of the single photon
state, which has negative values for p and q values such that p2 + q2 < 1 (so
that it can be orthogonal to the Gaussian state |n = 0〉 for example).The neg-
ative part of the Wigner function forbids us to interpret W as a well-behaved
probability function. A number state is in this respect "more quantum" than
a Gaussian state.
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Figure 5: Wigner function of the single photon state

4.2.2 Coherent state

a-De�nition
It can be easily shown that the spectrum of the annihilation operator â`

is the set of complex numbers, while there are no normalizable eigenstates
for the creation operator â`

†. A coherent state (or Glauber state, or quasi-
classical state) |α〉 is de�ned as the eigenstate of â` of eigenvalue α (α being
any complex number), and therefore of the single mode complex electric �eld
operator:

â`|α〉 = α|α〉 ; Ê
(+)
` (r, t)|α〉 = 〈Ê(+)

` (r, t)〉|α〉 (123)

b-Main properties
Simple derivations show that in such a state:

〈Ê(+)
` (r, t)〉 = iE`αe

−i(ω`t−k`·r)+comp.conj ∆Ê
(+)
` (r, t) = ∆Êq` = ∆Êp` = E`

(124)
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The mean �eld has the expected classical spatio-temporal variation, but the
�eld variances are independent of space-time position, independent of the
eigenvalue α, and equal to the vacuum �uctuations8. It is, like the vacuum
state, a minimum state with equal �uctuations on the two quadratures. Its
expressions as a vector on the number state basis and its Wigner function
are:

|α〉 = e−|α|
2/2

∞∑
n=0

αn

√
n!
|n〉 ; Wα(q, p) =

1

2π
e−((p−p0)2+(q−q0)2)/2 (125)

with q0 + ip0 = 2iα. The �rst expression shows us that the photon number
probability in such a state is Poissonian, so that one can interpret this state
as being composed of photons arriving at statistically independent times
with a mean �ow equal to |α|2. The second relation is similar to the Wigner
function of vacuum (relation (112)), but displaced in the (q, p) plane around
the point (q0, p0) (see �gure (3)). Coherent states can be indeed obtained
from the vacuum state by applying on it the displacement operator D̂(λ` = α)
introduced in (94).

As coherent states are Gaussian states, with a positive Wigner function,
they cannot be orthogonal. One shows more precisely that:

|〈α|α′〉|2 = e−|α−α′|2 (126)

Though they are never exactly orthogonal, they are almost orthogonal when
the two eigenvalues di�er by a number the modulus of which exceeds a few
units.

In addition, one shows that when two coherent states |αin
1 〉 and |αin

2 〉
are incident on a beamsplitter, the output state is a tensor product of two
other coherent states |αout

1 〉 and |αout
2 〉, which are therefore not correlated.

The relations between the complex numbers αout
i and the αin

j are simply the
relations relating the classical output complex amplitudes to the input ones
on the beamsplitter.

Let us �nally mention that one has the following decomposition of the
identity 1̂ in terms of projectors over the coherent states:

1

π

∫
d2α|α〉〈α| = 1̂ (127)

8The coherent state |α = 0〉 is also the zero photon state or vacuum |n = 0〉. It is the
only common eigenstate of the number operator and the annihilation operator
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This decomposition does not mean that the coherent states form a basis of
the single mode Hilbert space. The set of coherent states is "over-complete"
and the decomposition is not unique. The identity operator can be also de-
composed on a much smaller sub-set of |α〉〈α| projectors, for example the
ones with a constant modulus.

c-The intense coherent state (|α|2 � 1)
One can easily show that:

â†`|α〉 = α∗|α〉+ |ε〉 ; 〈ε|ε〉 = 1 (128)

and for the real electric �eld operator:

Ê`(r, t)|α〉 = 〈Ê`(r, t)〉|α〉+ |ε′〉 ; 〈ε′|ε′〉 = E2
` (129)

For an intense coherent state the second terms in expressions (128) and (129)
are negligible compared to the �rst ones. As a result, intense coherent states
are "quasi-eigenstates" of the �eld operator. This property allows us to
replace the �eld operator by its "quasi-eigenvalue" in many expressions, so
that when the �eld is in such a state, the quantum theory of the system
can be replaced by a semi-classical theory in which all the intense coherent
�elds are replaced by their classical time varying expressions. Another way
to state the same property is to say that, in intense coherent states, the �eld
�uctuations of the order of E`, are negligible compared to the mean of the
order of |α|E`.

Intense coherent �elds are thus "almost classical" states. This is not the
case for low intensity coherent states (|α|2 ≈ 1) for which quantum �uctua-
tions play a very important part. For example, low intensity coherent states
can be used for quantum cryptography.

d-Generation
These states are relatively easy to produce. Glauber has shown that clas-

sical oscillatory electrical currents, for example in HF antennas, radiate co-
herent states. A single mode laser operating well above its threshold produces
an intense coherent state, at least for measurements which are made in a time
much smaller than the Schawlow-Townes phase di�usion time. Any source
with a non-zero mean �eld and non minimum quadrature noises evolves into
a coherent state of small α when it is attenuated. When |α|2 � 1, it can be
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written, up to second order in α:

|α〉 ≈ (1− α2

2
)|0〉+ α|1〉+

α2

2
|2〉+ ..., (130)

This state is very di�erent form the single photon state |1〉: it is mainly
composed of vacuum, and also contains a on-negligible amount of photon
pairs. Attenuated light has therefore not the same properties as single pho-
tons.

4.2.3 Statistical superpositions of coherent states

They are described by density matrices of the form:

ρ =

∫
d2αP (α)|α〉〈α| (131)

P (α) being the classical, positive, probability distribution of having a coher-
ent state with the value α.

When |α| is large, ρ describes a genuine classical state with a �nite clas-
sical temporal coherence (in the classical optics meaning), where the phase
and amplitude �uctuations are of classical origin.

The most important example of such a state is the thermal state ρT , that
one obtains when the radiation �eld is at equilibrium with a reservoir at
temperature T . Its general expression is ρT = exp(−ĤR/kBT )/Z, where the
partition function Z is a normalizing factor. One can show that this implies
ρT is of the form (131) with:

P (α) =
1

πn
e−|α|

2/n (132)

n being the mean number of thermal photons (n−1 = e~ω`/kBT−1). A thermal
state can thus be seen as a statistical superposition of coherent states with
a Gaussian statistics.

The thermal state can be described in the number state basis and as a
Wigner function by the following expressions:

ρT = n−1
∑

n

e
−(n+1)

~ω`
kBT |n〉〈n| W (q, p) =

1

2π(2n+ 1)
exp

(
− p2 + q2

2(2n+ 1)

)
(133)
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Figure 6: Wigner function of a squeezed vacuum state

The density matrix is diagonal in the number state basis, and the coe�cients
form a geometrical series. The Wigner function is Gaussian and symmetric.
In such a state, the mean �eld is zero, and the variance of any quadrature is
(2n + 1)E2

` , just like in a number state. But the Wigner function is always
positive, which is not the case for a number state. From (116) one �nds that
the purity P of a thermal state is P = (2n + 1)−1. Therefore, if n � 1, i.e.
if ~ω` � kBT , which is the case in the optical range at room temperature,
the thermal state is very close to a pure state, namely the vacuum state.

4.2.4 Squeezed states

a-De�nition and main features
Let us introduce the operator

ÂS = â` coshS + â†` sinhS (134)

It obeys the commutation relation of an harmonic oscillator annihilation
operator [ÂS, Â

†
S] = 1. The squeezed states |α, S〉 are the coherent states of

this annihilation operator:

ÂS|α, S〉| = α|α, S〉 (135)
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We will call "squeezed vacuum" the state |α = 0, S〉, which has the fol-
lowing expression in the number state basis:

|α = 0, S〉 =
1√

coshS

∑
n

(tanhS)n

√
2n!

n!
|2n〉 (136)

It only expands on the even number states, and is sometimes called a "two-
photon coherent state". Its Wigner function has the following expression:

W (α) =
2

π
exp

(
−2|(α− α0) coshS + (α∗ − α∗0) sinhS|2

)
(137)

W (q, p) =
1

2π
exp

(
−(q − q0)

2e−2S/2− (p− p0)
2e2S/2

)
It is therefore a Gaussian state, the variances of which are di�erent on the
two quadrature. It is depicted in �gure (6). More precisely, it is easy to see
that:

∆Ep = E`e
−S ∆Eq = E`e

S ∆Ep∆Eq = E2
` (138)

∆2Ê`(r) = E2
`

(
e2S cos2 k` · r + e−2S sin2 k` · r

)
Squeezed states are minimum states, in which the electric �eld �uctuations
are alternatively greater and smaller than the vacuum �uctuations, on the
distance of half the wavelength. When S → ±∞, the squeezed state goes
to an eigenstate of Êp` or Êq`. These states are very useful to improve
measurements made on a single quadrature, for example in interferometry
(see A. Heidmann's lectures).

They can be generalized if one consider now the operator ÂS,φ = â`e
iφ coshS+

â†`e
−iφ sinhS, which still obeys the commutation relation of an annihilation

operator. One introduces a generalized squeezed state |α, S, φ〉 as an eigen-
state of ÂS,φ with the eigenvalue α. These states are also Gaussian states for
which:

∆x̂φ = E`e
−S ∆x̂φ+π

2
= E`e

S ∆x̂φ∆x̂φ+π
2

= E2
` (139)

∆2Ê`(r) = E2
`

(
e2S cos2(k` · r + φ) + e−2S sin2(k` · r + φ)

)
where ∆X̂φ is the rotated quadrature operator introduced with the homo-
dyne detection (subsection (2.5.2)). The states |α, S, φ〉 are therefore the
usual squeezed states rotated by an angle φ in the Fresnel plane.
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b-Generation
The input-output relations have the following important property, that

can be easily derived: if the input state is an eigenstate of the input op-
erators, then the output state is an eigenstate of the output operator. So
starting from the vacuum state, or from any coherent state, an input-output
relation of the form (134) will produce a squeezed state at its output. This is
the case for the degenerate parametric interaction, obeying the input-output
relation (84) with Ê

(+)
1,in ≡ Ê

(+)
2,in, i.e. when the signal and idler modes are

identical. Experimentally speaking, one �rst needs to use a parametric crys-
tal in the right phase matching conditions to achieve degenerate parametric
interaction. Then a �rst possibility is to pump it with an intense pulsed laser:
one gets in this way squeezed pulses of light. The second solution is to use a
c.w. less intense pump laser and a cavity which is resonant on the common
signal-idler mode and enhances the non linear interaction. One builds in this
way a (degenerate) Optical Parametric Oscillator (OPO), likely to produce
c.w. intense beams, like a laser, above some pump power threshold. Just
below the oscillation threshold, the system produces highly squeezed states.
In both con�gurations, the exact degeneracy conditions are more easily ob-
tained when one injects at the input of the crystal a small coherent state
at half the pump frequency, which is parametrically ampli�ed (in a phase-
sensitive way) by the non-linear crystal.

c-Small �uctuation approximation
In many experimental situations, the input �elds are "intense" enough

so that their mean value is much larger than E`. In this case, the �eld
�uctuations are negligible compared to the mean �elds. Let us introduce a
�uctuation operator:

δÊ = Ê− < Ê > (140)
where E stands for any �eld, annihilation or creation operator. It is in this
case a good approximation to linearize the input-output relations of any non-
linear interaction around the mean values of the �eld operators. One ends
up with input-output relations of the form:

δÊ
(+)out
` =

∑
`′

(
A`′

` δÊ
(+)in
`′ +B`′

`′ δÊ
(−)in
`′

)
(141)

which, by construction, obey the canonical commutation relations. These
are therefore symplectic transformations, which contain the squeezing trans-
formations. In particular, third order non-linear e�ects like the optical Kerr
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e�ect, which leads to an intensity-dependent index of refraction in media
such as optical �bers, yield to an input-output relation that is quadratic
in the annihilation and creation operators. When this relation is linearized
around the mean value, i.e. when the Kerr medium is submitted to intense
�elds, one gets a squeezing transofrmation. For example Kerr media such as
glass are often used experimentally to generate squeezed states by sending a
coherent state in a long optical �ber. But when the Kerr media are pumped
by a low intensity coherent state, or when the Kerr e�ect is huge, the lin-
earization approximation drops, and the Wigner function of the output state
is no longer Gaussian.

Let us note that at this level of approximation, intensity �uctuations and
quadrature operator �uctuations of are proportional, because:

δ(â†â) ' A(δâ†eiφ + δâe−iφ) = Aδx̂φ (142)

where < â >= Aeiφ. Intensity �uctuations are in particular proportional to
the �uctuations δq̂ and δp̂ when φ is zero or π/2. More generally, expression
(142) is very similar to expression (87) of the signal in homodyne detection.
A direct intensity measurement, at the small �uctuation approximation, is
thus a kind of "self-homodyne technique", the local oscillator being the mean
�eld itself.

4.2.5 Schrödinger cats

Generalizing the well known example given by Schrödinger to illustrate the
paradoxical character of quantum superpositions, quantum opticians call
Schrödinger cat states quantum states of light which are linear superposition
of macroscopically distinguishable light states. As we have seen in section
(4.2.2), intense coherent states are indeed the quantum states which are able
to describe classical �elds. Among others, Schrödinger cat states states can
be of the form:

|Ψ1
cat〉 =

1√
2
(|α〉 ± |0〉) ; |Ψ2

cat〉 =
1√
2
(|α〉 ± | − α〉) (143)

with |α| � 1. The �rst one is the "superposition of light and obscurity",
close to the superposition of a dead and alive cat. The second one, of more
wavelike character, is the strange superposition of two classical waves of
opposite amplitudes. These states are highly quantum and have Wigner
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Figure 7: Wigner function of a Schrödinger kitten state

functions consisting of the two Gaussian peaks of the coherent states, plus
large interferences fringes in between which take large negative values (see
�gure (7)).

Actually such states are very fragile when they are submitted to losses,
which induce strong decoherence e�ects: the loss of the energy of a few
photons is able to transform them into mixed states such as:

ρ1
cat =

1

2
(|α〉〈α|+ |0〉〈0|) ; ρ2

cat =
1

2
(|α〉〈α|+ | − α〉〈−α|) (144)

Their Wigner functions are now positive and contain two Gaussian peaks
but no fringes. "Schrödinger kitten states"9 of the same form (143) but
with |α| ' 1 are somewhat more easily to handle, and have actually been
generated in a conditional way by di�erent groups in the world.

4.2.6 Single mode non-classical states of light

We have seen in this section that, as far as photocurrent �uctuations are
concerned, number states and squeezed states lead to �uctuations smaller

9See J. Wenger's lecture
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than the standard quantum limit, whereas coherent states are at the standard
limit, and statistical superpositions of coherent states lead to �uctuations
larger than this limit. Number states and squeezed states are therefore in
the category of non-classical states. One can show that it is also the case for
Schrödinger cat states.

Coherent states are just at the boundary between classical and non-
classical states: this is why they are called "quasi-classical" states. They
are often used in experiments to set the experimental value of the standard
quantum limit.
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5 CORRELATIONS IN BIPARTITE SYSTEMS

We now consider a bipartite system, which is formed of two separated parts,
called 1 and 2, that have interacted in the past and are spatially well sep-
arated so that one can make measurements on the �eld in part 1 without
physically perturbing the part 2. In the majority of cases studied below these
two parts will be two well-separated modes of the radiation �eld. Many con-
clusions are also valid in the case where the bi-partite system is formed of
two separated sets of modes.

5.1 Characterization of correlations

Let us �rst recall some general properties of correlations between the mea-
surements of two physical quantities A and B, which are performed on a
system which is not necessarily bipartite.

5.1.1 Correlation function

If the measurement of the quantities A and B on the system has yielded
values a and b, one obtains a point of coordinates a, b in a two-dimensional
space. If one reproduces many times the same system and measure again A
and B on each one, one obtains many points which form a "cloud". When
these points are well-aligned, the measurement of A for example gives a lot of
information about the value of B: there is a strong correlation between the
two quantities. The amount of correlation is characterized by the correlation
function CAB:

CAB =
1

2
< AB +BA > − < A >< B >=

1

2
< δAδB + δBδA > (145)

where δA = A− < A >. This de�nition applies to classical �uctuating
quantities (in this case AB = BA, and the mean <> is taken on the classical
statistical ensemble) and also to quantum observables Â and B̂. In both
cases, the Cauchy-Schwartz inequality tells us that:

C2
AB ≤ ∆2A∆2B (146)

one can then de�ne a normalized correlation coe�cient cAB equal to:

cAB =
CAB

∆A∆B
(147)
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which varies between −1 (perfect anti-correlation) to +1 (perfect correlation
through 0 (absence of correlation).

Perfect correlations (or anti-correlations) between distant objects exist
in the classical world as well as in the quantum world. For example the
values of the intensities of two electrical currents obtained by dividing a given
current in two parallel derivations are proportional and therefore are perfectly
correlated classical quantities: measuring the intensity of the current in part
1 allows us to immediately predict the intensity in the other wire without
interacting with it: taking advantage of perfect correlations is the most easy
way to perform a Non Demolition measurement on a system.

5.1.2 Conditional variance

When the correlation between A and B is not perfect, measuring A does
not allow us to perfectly know B, but it reduces our uncertainty on the
possibly measured values of B. The reduced uncertainty on B knowing A is
characterized by the conditional variance ∆2(B|A) given by:

∆2(B|A) = ∆2B (1− c2AB) = ∆2B − C2
AB

∆2A
(148)

∆2(B|A) is always smaller than ∆2B and is zero when the (anti-)correlation is
perfect. Let us introduce the "corrected" B value, equal to δBλ = δB−λδA,
obtained by correcting the �uctuations of δB by some amount of the �uctu-
ations of the correlated quantity A. It is easy to show that the conditional
variance ∆2(B|A) is the minimum value of ∆2Bλ =< δ2Bλ > for all the
possible choices of the contamination factor λ.

5.1.3 Correlation between the two beams generated by a beam-
splitter

Let us consider the simple example of a 50% beamsplitter: in classical optics
the two output beams obtained by splitting a given input beam have equal
amplitudes, and are therefore perfectly correlated. This no longer the case
at the quantum level, when one takes into account the vacuum �uctuations
entering the unused input port of the beamsplitter. Using the beamsplitter
quantum input-output relations (82) with r = t = 1/

√
2, one easily �nds

the following expression for the normalized correlation coe�cient between
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quadrature measurements performed on the output beams 1 and 2:

c12 =
F in − 1

F in + 1
(149)

where the "input Fano factor" F in is the ratio between the variance of the
measured input beam quadrature and the vacuum �uctuation variance E2

`
10.

One �nds an almost perfect correlation if the input �eld is very noisy (F in �
1: vacuum �uctuations are then negligible), and no correlations when the
input beam is in a coherent state (F in = 1: as already seen in section(4.2.2)
a beamsplitter produces from two input coherent states a tensor product of
two output coherent states). One �nds perfect anticorrelations for an input
number state or perfectly squeezed state (F in = 0).

5.2 Classical and quantum correlations

The existence of strong, or even perfect, correlations or anti-correlations does
not ensure the "quantum character" of their origin. We need therefore to have
criteria allowing us to decide the amount of such quantum character revealed
by a given correlation.

5.2.1 Heisenberg inequality for a correlation

When Â and B̂ are quantum observables, one has the following generalized
Heisenberg inequality11, valid for any quantum state of the system:

∆2A∆2B ≥ 1

4
| < [Â, B̂] > |2 + C2

AB (150)

This inequality implies the usual Heisenberg inequality when one forgets the
C2

AB term, and the Cauchy-Schwartz inequality when one forgets the com-
mutator term. It yields a new Heisenberg inequality, valid for correlated
measurements, which deals with the variance of A and the conditional vari-
ance of B knowing A:

∆2A∆2(B|A) ≥ 1

4
| < [Â, B̂] > |2 (151)

10This quadrature can be the amplitude quadrature, and therefore one can extend the
present discussion to intensity measurements provided that the small �uctuation approx-
imation is valid.

11See for example J.J. Sakurai, Advanced Quantum Mechanics, Addison-Wesley
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In addition, it gives an upper limit to the normalized correlation coe�cient:

c2AB ≤ 1− | < [Â, B̂] > |2

4∆2A∆2B
(152)

As a result, two non-commuting observables cannot be perfectly (anti-)correlated.
In contrast, measurements performed on the two separated parts of a bipar-
tite system are always associated with commuting observables Â1 and B̂2. In
this case, perfect quantum (anti-)correlations are possible.

5.2.2 Non-classical correlation: "gemellity"

Let us consider an optical system producing two output beams. We want to
know whether the correlation that we observe between measurements per-
formed on these two beams can be described or not within the semi-classical
approximation (classical �uctuating �elds and quantum detectors) mentioned
in section (3.4.2). It is easy to see that the mixing of the two beams on a
beamsplitter does not change the classical or non-classical character of a
beam. We will therefore say that two beams are correlated in a non-classical
way if, by appropriately mixing them, one obtains a single mode non-classical
beam, i.e. a sub-Poissonian beam. This statement is nothing else than the
general Simon de�nition of a non-classical state of light given in section
(3.4.2) applied to the two-mode case. One can then use the Simon criterion
to characterize it: the smallest of the covariance matrix eigenvalues must be
smaller than 1. When one calculates the minimum eigenvalue of the 4 × 4
covariance matrix and impose that it must be smaller than 1, one obtains
a general criterion for a non-classical correlation that has a complicated ex-
pression, di�cult to interpret12. It is more interesting to write the criterion
in the simple "balanced" form of the covariance matrix. In this particu-
lar case, the variances are equal in the modes 1 and 2 for each quadrature
(∆Eq1 = ∆Eq2; ∆Ep1 = ∆Ep2), and there are no correlations between the q
and p quadratures, inside the two modes and between the two modes. If for
example the smallest eigenvalue corresponds to the q quadrature, the Simon
criterion of non-classicality of section(3.4.2) becomes:

G = Fq(1− |cEq1Eq2|) < 1 (153)
12N. Treps, C. Fabre, Criteria of quantum correlation in the measurement of continuous

variables in optics Laser Physics 15 187 (2005)
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where G is the so-called "gemellity" of the two beams 1 and 2, and Fq =
∆2Eq1/E2

` is the common Fano factor of the two beams on the q quadrature.
A gemellity smaller than 1 implies that the observed correlations between the
two beams have no semi-classical description. This criterion implies a lower
limit for the normalized correlation coe�cient between the q-quadratures of
the two beams in a non-classical system:

|cEq1Eq2| > 1− 1

Fq

(154)

In order to be non-classical, the correlation must be close enough to 1, espe-
cially when the two beams are noisy. Inversely, any correlation between two
beams at the standard quantum level (Fq = 1) is of quantum origin.

There is another expression of the gemellity, always in the balanced case
of equal variances for the two correlated beams:

G =
∆2(Eq1 − Eq2)

2E2
`

(155)

meaning that the �uctuations of the quadrature di�erence observable (Êq1−
Êq1)/

√
2 are below the standard quantum limit. This is the reason why non-

classical correlations of this kind are sometimes called di�erence squeezing.
In the case when one is interested in the amplitude quadratures of the two

modes, such non-classical beams are called twin beams, as they have almost
identical intensity �uctuations. The gemellity G can be easily measured in
the case of twin beams: one just has to subtract the photocurrents coming
from the two photodiodes directly measuring the intensity �uctuations of the
two beams.

Let us go back to the case of two beams produced by splitting an incident
beam of Fano factor F in

q on a 50% beamsplitter. We are in the balanced case,
because the two output beams have equal mean intensities and �uctuations.
It is easy to show that the gemellity has the following expression in this case:

F in
q > 1 : G = 1 ; F in

q ≤ 1 : G = F (156)

We have here an example of what we have already noticed: a classical beam
(F in

q > 1) gives on a beamsplitter two other classical beams, with classical
correlations (G = 1). The important feature is that G = 1 whatever the noise
on the classical input beam. In order to measure the standard quantum level
for the gemellity, a widely used technique is just to measure the gemellity
between such two beams.
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5.2.3 Criterion of QND correlation

As we have already stated, correlations allow us to perform Non Demoli-
tion measurements. But in which respect is this ND measurement a "QND"
measurement (Quantum Non Demolition measurement) ? It is when a mea-
surement on beam 2 allows us to obtain some information about the quantum
�uctuations of beam 1. This information can then be used in an active feed-
forward correction scheme of the �uctuations of beam 1, with the help for
example of an electro-optic modulator, and if there are QND correlations,
the resulting beam should be below the standard quantum limit. As we have
seen in section (5.1.2), the optimum correction scheme allows us to reach the
conditional variance of beam 1 �uctuations, knowing beam 2 �uctuations.

We will therefore say that a given correlation between the quadratures
Eq1 and Eq2 is a QND correlation if one has:

∆2(Eq1|Eq2) < E2
` (157)

Using expression (148) of the conditional variance, this implies the following
inequality for the Fano factor and the normalized correlation:

Vq = Fq(1− c2Eq1Eq2
) < 1 (158)

An expression close to the non-classicality criterion (153), but di�erent. The
QND criterion implies a lower limit for the normalized correlation coe�cient
:

|cEq1Eq2 | >

√
1− 1

Fq

(159)

In order to be QND, the correlation must be even closer to 1 than the value
needed to be non-classical. More precisely, one shows that there is the follow-
ing order between the gemellity G and the normalized conditional variance
Vq:

G ≤ Vq ≤ 2G (160)
The presence of a QND correlation is a stronger quantum e�ect than the
non-classical character of the beams. In addition, a gemellity smaller than
0.5 is enough to ensure that the two beams are QND correlated.

Finally, one easily shows that the normalized conditional variance between
two beams produced by a 50% beamsplitter is equal to 2F in

q /(F
in
q + 1). It is

smaller than 1 as soon as F in
q is smaller than 1: splitting a squeezed beam

on a 50% beamsplitter produces QND correlations.
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5.3 Entangled states

5.3.1 De�nition and main properties

a-Pure state
Let us consider the most general bi-modal pure state, described by the

state vector:
|Ψ〉 =

∑
n1,n2

cn1,n2|n1, n2〉 (161)

There is a very useful theorem due to Schmidt, which establishes that
such a state can always be written in the following way:

|Ψ〉 =
S∑

i=1

αi|ui〉 ⊗ |vi〉 (162)

where |ui〉 and |vi〉 are vectors belonging respectively to the Hilbert space
of mode 1 and mode 2 and forming two orthonormal sets, and the αi are
S nonzero complex numbers such that

∑
i |αi|2 = 1. Expression (162) is

called the Schmidt decomposition of the bimodal vector |Ψ〉. Though this
decomposition is not unique, the number S, called the Schmidt number, is
unique, and is linked to the "complexity" of the considered quantum state.

• If S = 1, then |Ψ〉 = |u1〉⊗|v1〉: the state is factorized. If Â1 and B̂2 are
any "local" observables acting respectively only on mode 1 and 2, then
< Â1B̂2 >=< Â1 >< B̂2 >, and CA1,B2 = 0: there are no correlations
between any local observables in such a state.

• If S > 1, then the state cannot be factorized and is called an "en-
tangled state". Correlations may now occur between measurements
performed on parts 1 and 2. So, for a pure state, there is a very simple
entanglement criterion: a pure state is entangled if and only if there ex-
ists local measurements on parts 1 and 2 which exhibit some degree of
correlation. Entanglement and correlation are therefore synonymous,
whatever the kind of correlation, classical, non-classical or QND which
is observed in the system. Furthermore, observables which are diagonal
in the basis |ui〉 or |vi〉, called "Schmidt observables", of the form:

Â1 =
S∑

i=1

ai|ui〉〈ui| ; B̂2 =
S∑

i=1

bi|vi〉〈vi| (163)
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where ai and bi are any real numbers which are all di�erent, give a cor-
relation coe�cient CA1,B2 of 1 in state |Ψ〉, because the measurement
of the value bk of B2 will project the initial state on |uk〉 ⊗ |vk〉, giving
without any uncertainty the value ak to the measurement of A1.

-b Mixed state
A density matrix ρ is called separable if one can write it in the following

form:

ρ =
k∑

i=1

pi|ui〉 ⊗ |vi〉〈ui| ⊗ 〈vi| (164)

pi being real positive numbers with
∑

i pi = 1. Such a state is therefore a
statistical mixture of factorized pure states.

If one cannot write ρ as (164), then the mixed state is named "entangled"
or "non-separable".

It is easy to see that one has perfect correlations between Schmidt ob-
servables Â1 and B̂2 of the form (163) in a separable state: correlations and
entanglement are no longer synonymous for a mixed state.

5.3.2 Examples

a- Pure twin beams
They have the following Schmidt decomposition:

|Ψtwin〉 =
∞∑
i=1

cn|n〉 ⊗ |n〉 =
∞∑
i=1

cn|n, n〉 (165)

As the photon number operators â†1â1 and â†2â2 are Schmidt observables of the
form (163), they are perfectly correlated in such a state whatever the value
of cn. The state is formed of "twin photons" which were born at the same
time in the source and have been separated at the output. This can be seen
also on the property that |Ψtwin〉 is an eigenstate of the intensity di�erence
operator N̂1 − N̂2 = â†1â1 − â†2â2 with the eigenvalue 0, so that the variance
∆2(N1−N2) vanishes in such a state: the gemellity G is also zero in this state.

b- Mixed twin beams
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They are described by the following separable density matrix:

ρtwin =
∞∑
i=1

|cn|2|n, n〉〈n, n| (166)

As stated in the previous section, there is also a perfect correlation between
the photon numbers N̂1 and N̂2 in the two modes, and no �uctuations on the
intensity di�erence N̂1 − N̂2.

As the normalized correlation cN̂1,N̂2
is equal to 1, the criteria (153) and

(158) tell us that this separable state is non-classical (being a statistical
superposition of non-classical number states), and that it allows us to make
perfect QND measurements of the beam intensity.

This shows that in addition to entangled states, one can �nd separable
states which are non-classical states of considerable physical interest.

c- Two-mode squeezed states
Let us go back to the situation of parametric mixing that we have intro-

duced in section (2.4.4), described in the operatorial point of view by the
input-output relation (85). The corresponding transformation for the states
is:

|ψout〉 = eS(â†1â†2−â1â2)|ψin〉 (167)
corresponding to an hamiltonian evolution in which photons in the signal
and idler modes are created or destroyed simultaneously. If the input state
is the vacuum, then one can show that:

|ψout〉 =
1

coshS

∑
n

(tanhS)n|n, n〉 (168)

which is indeed a pure twin beam.
When the parametric crystal is pumped by a cw laser of a few Watts, the

value of S is small so that |ψout〉 ' |0, 0〉 + S|1, 1〉: |ψout〉 is a "twin-photon
state", a very interesting quantum state which has been the subject of many
investigations (see A. Browaeys lectures). When the crystal is inserted in
a resonant cavity, one has an OPO, similar to the one described in section
(4.2.3.b) (but simpler, as we no longer require the signal and idler mode
frequencies to be identical). Below the oscillation threshold of the device, the
OPO produces a two-photon squeezed state like (168) with S → ∞ when
the pump intensity approaches the threshold value. Above the oscillation
threshold one gets intense pure twin beams of the form (165) with |cn|2
peaked for very high n values. Experimentally speaking the best measured
value of the gemellity is G ' 0.1.

64



5.3.3 Entanglement criteria

We will just consider here the case where each part consists of a single mode
�eld and give only a few examples of such criteria, as new ones are published
almost monthly. Entanglement criteria are even more di�cult to �nd in the
general bipartite case.

a- Positive partial transpose
This general criterion, introduced by Peres and Horodecki, concerns the

partial transpose ρT1 of the bipartite density matrix ρ de�ned by:

〈n1, n2|ρT1|n′1, n′2〉 = 〈n′1, n2|ρ|n1, n
′
2〉 (169)

It states that the density matrix ρ is separable if and only if all the eigen-
values of the partial transpose ρT1 are positive or zero. This criterion is useful
from a mathematical point of view, but it is not operational as one has no
experimental access to the partial transpose of the state under study.

b- Criterion for Gaussian states
The problem of �nding a criterion is simpli�ed if one restricts oneself to a

sub-space of all possible quantum states, for example the subset of gaussian
states described in section (3.3). These states are characterized by a 4 × 4
covariance matrix σ that one can write as made of four 2 × 2 sub-matrices
of correlation and variances:

σ =

[
V1 C12

CT
12 V2

]
(170)

Adesso and Illuminati have given an entanglement criterion in terms of
the global purity P = Trσ2 = 1/

√
Detσ and the marginal purities Pi =

1/
√
DetVi. They have shown that the state is entangled if the following

inequality holds:
P >

P1P2√
P 2

1 + P 2
2 − P 2

1P
2
2

(171)

and that the state is separable if the following inequality holds:

P <
P1P2

P1 + P2 − P1P2

(172)

an narrow intermediate region existing for P in which the entanglement can-
not be assessed by a criterion based only on the purities.
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Duan et al.13 have given a necessary and su�cient criterion based on
the covariance matrix when it is written in the so-called "normal form", i.e.
after the system has undergone a speci�c symplectic transformations acting
separately on the two parts, which preserve the entanglement property.

All these criteria can be used to assess the entanglement of a state of light
produced in an experiment, but only when one is able to record by homodyne
techniques the �uctuations of the two quadratures of the two modes and de-
rive from them the values of all the elements of the covariance matrix σ. But
it is not very practical as it requires many measurements on the system.

c- Operational criteria for Gaussian states
They allow us to ascertain by only two measurements that a given Gaus-

sian state is entangled. They are only necessary conditions, so that some
entangled states are beyond reach of these criteria. They are based on the
measurements of the two gemellities:

Gp
− =

∆2(Ep1 − Ep2)

2E2
`

; Gq
+ =

∆2(Eq1 + Eq2)

2E2
`

(173)

These two quantities are readily measurable by using a 50% beamsplitter
that mixes the two single-mode beams the entanglement of which one wants
to assess and precisely gives at its output the ± combinations of the two
�elds. Two balanced homodyne detections are then needed on these two out-
put ports with the appropriate local oscillator phases to measure the required
quadrature �uctuations. Let us stress that these quantities, concerning con-
jugate variables, are not constrained by a Heisenberg inequality and can be
simultaneously very small because they are associated with commuting op-
erators:

[Êp1 − Êp2, Êq1 + Êq2] = 0 (174)

A Gaussian mixed state is non-separable or entangled if one of the two
following inequalities is ful�lled:

SDuan =
1

2
(Gp

− +Gq
+) < 1 or SMancini = Gp

−G
q
+ < 1 (175)

The �rst criterion is a particular case of the Duan criterion mentioned in the
previous section. The second one has been obtained by Mancini et al.14. The

13L.M. Duan, G. Giedke, J.I. Cirac, P. Zoller, Phys. Rev. Letters 84 2722 (2000).
14V. Giovanetti, S. Mancini, D. Vitali, P. Tombesi, Phys. Rev A 67 022320 (2003).
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quantities SDuan and SMancini are called separabilities. One has SMancini ≤
SDuan, so that the Mancini criterion concerns more entangled states than
the Duan criterion. To be sure that a Gaussian state is entangled, one
therefore needs to show that two non-commuting observables of the system
are correlated, and that there is a non-classical correlation (G < 1) on at
least one of these two observables.

5.4 The Einstein-Podolsky-Rosen argument

5.4.1 Preliminary remark

The EPR argument is based on the relation (174), which implies that quan-
tum mechanics does not forbid the existence of a quantum state which is an
eigenstate of the two operators Êp1−Êp2 and Êq1 +Êq2. In such a state there
is a perfect correlation between Êp1 and Êp2, and a perfect anti-correlation
between Êq1 and Êq2. Therefore in such a state a homodyne detection on the
beam 2 enables us to make a perfect QND measurement on the two conjugate
quadratures of beam 1.

5.4.2 The EPR paper

This famous paper15 does not deal with the �eld quadratures, but with the
position and momentum variables q1, q2, p1 p2 which obey the same com-
mutation relations. The authors give the wavefunction of a state that is
simultaneously eigenvector of q̂1 − q̂2 and p̂1 + p̂2. In this state, as noticed
in the previous section, one can perfectly know either the position or the
momentum of particle 1 by performing measurements on particle 2 which
cannot physically a�ect particle 1. Their conclusion is that there exists an
"element of reality" corresponding to these two quantities, and therefore that
Quantum Mechanics which states that it is not possible to attribute simul-
taneously well de�ned values to these two quantities, is not complete.

Independently of the question of physical reality raised by the authors,
the EPR paper pointed out a very important and puzzling aspect of Quantum
Mechanics: when two particles (or two �elds) have interacted in the past so
that they are described by an entangled state, they form a single physical
object even if they are very far apart at the moment of the measurement,
and any attempt to separate it into two isolated parts leads to paradoxical

15A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47 777 (1935).
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conclusions. Let us note however that this statement applies only when
one is interested in the correlations between measurements performed on two
particles. If one is interested in observables of particle 1 only, all the physical
predictions can be made when one knows a quantity independent of particle
2, namely the reduced density matrix ρ1 traced over the Hilbert space of
particle 2.

5.4.3 The Reid criterion for EPR correlation

Following M. Reid16, we will say that a two-mode state exhibits EPR correla-
tions, or is EPR-correlated, when it provides a concrete manifestation of the
Einstein-Podolsky-Rosen argument. This means that the state allows us to
simultaneously perform QND measurements on the two quadratures of the
�eld which lead to an "apparent violation" of the single-mode Heisenberg
inequality. More precisely, the system is EPR correlated when one has the
following inequality for the conditional variances:

∆(Ep1|Ep2)∆(Eq1|Eq2) < E2
` (176)

Of course, this condition does not violate the rules of quantum mechanics,
as it concerns conditional variances and not simple variances.

One can show that, whereas no separable states exhibit EPR correlations,
there are entangled states which do not violate the inequality (176). Just like
in the single mode case, EPR correlations, related to QND measurements,
require more quantum resources that just formal requirements about the
state, concerning its non-classical or entangled character. For example losses
do not cancel the entanglement between two modes, they just reduce it,
whereas they quickly destroy the EPR-correlation.

5.4.4 Generation of EPR-correlated beams from squeezed beams

We have already seen that correlations can be simply created by splitting
beams by beamsplitters. In order to get not only correlated, but entangled
or even EPR-correlated beams, one needs non-classical beams at their input,
such as squeezed states. So we now consider the following set-up: two non-
correlated squeezed beams, the �rst on the p quadrature, the second on the

16M.D. Reid, Phys. Rev. A 40 913 (1989).
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q quadrature, are incident on a 50% beamsplitter. We note:

S1 =
∆2Ep1

E2
`

; S2 =
∆2Eq2

E2
`

; Mi =
∆Epi∆Eqi

E2
`

i = 1, 2 (177)

The quantities Si are the squeezing factors, and the Mi are related to the
purity of the reduced density matrices of beams 1 and 2 (relation (116)).

A short calculation shows that if S1S2 < 1 then the Mancini criterion
is ful�lled, and the two beams are entangled. This means that, in order to
obtain entangled beams, it is enough to have one squeezed state at the input:
one can generate an entangled state by simply splitting a single squeezed state
on a beamsplitter.

The same calculation also shows that if

S1S2 < M1M2 −
√
M2

1M
2
2 − 1 (178)

then the EPR criterion is ful�lled and the two beams are EPR-correlated.
When the two input squeezed states are minimal (M1 = M2 = 1, the second
criterion is identical to the �rst one: the two beams are EPR-correlated as
soon as they are entangled. If they are not pure, more squeezing is needed
to counteract the e�ect of excess noise.

5.4.5 Bell inequalities in continuous variable quantum optics

The EPR paper stated: "While we have thus shown that the wave-function
does not provide a complete description of the physical reality, we left open
the question of whether or not such a description is possible". J. Bell showed
that, if one indeed completes the quantum description by using �uctuating
"hidden variables" that account for the stochastic character of the measure-
ments and are independently attached to the systems 1 and 2 when they are
far apart ("local hidden variables"), then the following inequality concerning
correlations ("Bell inequality") must be ful�lled:

S = | < Â1B̂1 > + < Â1B̂2 > + < Â2B̂1 > − < Â2B̂2 > | ≤ 2 (179)

where Âi and B̂i are two di�erent observables of the systems 1 and 2 that
have only two eigenvalues ±1. Bell showed that in a singlet state of two
spins 1/2, S could take the value 2

√
2 when Âi and B̂i are the projection

of the angular momentum on two appropriately chosen directions. Di�erent
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experiments performed on the polarization correlations in entangled twin-
photon states exhibited stronger and stronger violations of the Bell inequality
(179). These experiments show that a description of reality in terms of hidden
local variables is not possible17.

As stated by Bell himself, the situations is more complex for the position
and momentum measurements, or therefore for quadrature measurements,
which correspond to operators having a continuous spectrum. Entangled
Gaussian states, for example, will not violate Bell inequalities, because they
are totally described by a positive Wigner function, for which the quasi-
probability is a real probability. The hidden variables exist in such a case:
they are the instantaneous value of the quadrature �uctuations, which are
"carried" by the beams when they propagate, and therefore are local vari-
ables. The situation will be di�erent in non-Gaussian states which cannot
be described by a positive Wigner distribution.

The problem remains to �nd observables with a discrete spectrum ±1:
the parity of the photon number (−1)â†â is a possibility; the sign of the
�uctuation of a quadrature component sign(δÊq) is another one. Both lead
to Bell inequalities which have not been so far violated experimentally.

17A.Aspect, Nature 398 189 (1999) and refs in
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6 MULTIMODE SYSTEMS

6.1 Introduction

We are now interested in a physical system made of N modes, where N
can be very large, and which cannot be split in two physically separated
parts. On the contrary, all the modes play similar roles, so that the system
can be described on the initial mode basis as well as on any other mode
basis made of linear combinations of the initial modes. In these systems, we
have an interesting new degree of freedom, namely the choice of mode basis.
Finding the most appropriate basis, likely to simplify the description of a
given physical situation, is in general not obvious. For example, looking at
relations (48), we see that the state which is written as a complicated and
not factorizable way |2, 0〉/2 + |1, 1〉/

√
2 + |0, 2〉/2 on the travelling plane

wave mode basis is the simple factorized state |2, 0〉 on the standing plane
wave basis. Note that in the present context the fact the quantum state is
entangled is not intrinsic and depends on the mode basis. In the text below,
we will call "intrinsic" the properties which do not depend on a special choice
of mode basis.

An important example is the quantum description of optical images, i.e.
of the distribution of the �eld of a given polarization, in a given plane per-
pendicular to the propagation axis Oz at z = z0 and depending on the two
transverse coordinates (x, y). One can write the complex scalar �eld operator
in this plane, Ê(+)(x, y), on the TPW basis restricted to the xOy plane:

Ê(+)(x, y) = i
∑

`

√
~ω`

2ε0L3
eiq`·râ` (180)

where q` is the projection of the wave vector on the image plane of com-
ponents nx2π/L, ny2π/L. It can be also expanded on the Gaussian mode
basis:

Ê(+)(x, y) = i
∑

n

√
~ωn

2ε0L
vp,q(x, y, z0)b̂n (181)

where vp,q(x, y, z0) is the �eld distribution in a Hermite-Gauss or Laguerre-
Gauss mode and the collective index n includes the indices p and q. It can
be generally speaking written as:

Ê(+)(x, y) = i
∑
m

√
~ωm

2ε0L
um(x, y)âm (182)
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where the functions um form an orthonormal and complete basis of the trans-
verse plane.

There are other examples of multimode problems in quantum optics: for
example the quantum description of light pulses, or of trains of pulses, having
an arbitrary temporal shape, which are actually described as superpositions
of modes of di�erent frequencies.

6.2 Intrinsic single-mode state

6.2.1 Preliminary remarks

We have already introduced in section (4.1.1) the de�nition of a single-mode
state, which can be written as:

|u1 : Ψ〉 ⊗ |0, 0...〉 (183)

It expands over the number states of n 6= 0 only in a single mode, that we
have labelled u1 for the sake of simplicity. As seen in the introduction on the
simple example of state which is single-mode in the TPW basis and bimodal
in the SPW basis, this property is not intrinsic.

Let us consider for example the following multimode single photon state,
eigenvector of the total photon number with eigenvalue 1, written as:

|Ψ1〉 =
∑
m

cm|um : 1〉 (184)

with
∑

m |cm|2 = 1. |um : 1〉 is the state with one photon in mode um and
zero in all the other modes. Let us introduce the v1(x, y) function:

v1(x, y) =
∑
m

cmum(x, y) (185)

It is a �rst element of a mode basis (vn), that one completes with orthogonal
functions. It is easy to show that in this new mode basis, the previous
"multimode" single photon state is:

|Ψ1〉 = |v1 : 1〉 ⊗ |0, 0...〉 (186)

The same state is in this new basis a regular single mode one photon Fock
state.
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Let us also consider a multimode coherent state, tensor product of coher-
ent states in all the modes of a given mode basis:

|Ψ2〉 = |u1 : α1〉 ⊗ ..⊗ |um : αm〉 ⊗ .. (187)

Let us introduce the w1(x, y) function:

w1(x, y) =
1

β

∑
m

αmum(x, y) (188)

with β2 =
∑

m |αm|2. It is also the �rst element of a new mode basis (wn),
that one completes again. It is here also easy to show that in this new mode
basis, the previous "multimode" coherent state is:

|Ψ2〉 = |β : w1〉 ⊗ |0, 0...〉 (189)

The same state looks now as a single mode coherent state.
The question arises whether all quantum states of light can be reduced

to a single mode state by an appropriate choice of the mode basis.

6.2.2 Intrinsic single mode state

a-De�nition
An intrinsic single mode state is a quantum state for which there exists a

mode basis in which the state vector is of the form |φ : v1〉 ⊗ |0, 0...〉 if it is a
pure state, or in which the density matrix acts only on the restriction of the
Hilbert state to the sub-space of mode v1 if it is a mixed state. Consequently,
the mean number of photons is zero in all the modes except in v1.

b-Properties
Let us take a test mode basis (u`), with the corresponding annihilation

operators â`. One can show18 that a quantum state described by the vector
|Ψ〉 or the density matrix ρ is single mode if and only if the vector space
generated by all the vectors â`|Ψ〉 is of dimension 1. For example the state
|1, 1〉 is not single mode, because â1|1, 1〉 = |0, 1〉 and â2|1, 1〉 = |1, 0〉 are
orthogonal.

18N. Treps, V. Delaubert, A. Maître, J.M. Courty, C. Fabre " Quantum Noise in Mul-
tipixel Image Processing " Phys. Rev A71 013820 (2005)
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A mixed state which is intrinsically single-mode is characterized by the
property that all the matrices â`ρ are proportional, which implies that there
exists a vector |φ〉 such that:

∀ (r, t) Ê(+)(r, t)ρ = 〈Ê(+)(r, t)〉|φ〉 (190)

Intrinsic single mode states, pure or mixed, have also the following char-
acteristic property of factorization, valid for all couples of modes (k, l):

〈â†kâ`〉 = A∗
kA` (191)

which implies the same factorization property for the correlation between the
electric �eld at two di�erent space-time locations:

∀ (r, t, r′, t′, i, j) 〈Ê(−)
i (r, t)Ê

(+)
j (r′, t′)〉 = E∗

i (r, t)E
(
jr

′, t′) (192)

i, j being two Cartesian coordinates (x, y, z) of the electric �eld vector oper-
ator.

The physical meaning of an intrinsic single mode state is simple in the case
of images: in an intrinsic single mode state, the mean value < Ê(+)(x, y) >,

the standard deviation ∆E(+)(x, y) and all the higher moments
[
〈(δÊ(+)(x, y))n〉

]1/n

have the same spatial dependence, because they are all proportional to
v1(x, y). In contrast, in non-intrinsic single mode states, these di�erent quan-
tities have di�erent spatial variations.

To experimentally check whether a given quantum state is intrinsically
single mode or not, the latter property is more easy to use than the pre-
viously mentioned ones: one measures the mean value and the quadrature
noise in di�erent areas of the image plane (using a moving blade or an iris in
front of the detector for example). If the ratio of these two quantities is not
constant when one varies the detection area, then one is sure that the state is
not intrinsically single mode. But this test gives only a su�cient condition,
and a constant value of the ratio does not imply that the state is single mode.

c-Relation with classical coherence
In classical optics, the notion of coherence19 is linked to the ability to

observe interference fringes with a high visibility, which is contained in the
�rst order correlation function:

g(1) =
< E(+)(r, t)E(+)(r′, t′) >

∆E(+)(r, t)∆E(+)(r′, t′)
(193)

19See Goodman handbook[2] or R. Glauber Les Houches lectures[14]
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where the mean <> is taken over the classical ensemble of amplitude and
phase �uctuations. If |g(1)| = 1 then interferences are of contrast 1, and the
classical �eld is said to be perfectly coherent.

The g(1) function can also be de�ned for quantum �elds, replacing the
classical mean < E... > by the quantum mean TrρÊ.... The property of
contrast one for the fringes can then be shown20 to be equivalent to the
factorization property (192), so that:

|g(1)| = 1 if and only if the quantum state, pure or mixed, is an intrinsic
single mode state.

Consequently, in order to obtain perfect optical coherence, one does not
need a speci�ed quantum state of light, for example a Glauber coherent state.
The condition concerns only the intrinsic number of modes characterizing the
state. For example, one will be able to see perfect interference fringes with
intrinsic single mode states such as a product of coherent states, which is not
unexpected, but also with any single photon state, as noticed by Glauber[14].
In contrast, this will not be possible with the state |1, 1〉. As shown exper-
imentally by Hong, Ou and Mandel21, this state produces perfect fringes if
one measures them on intensity correlations, sensitive to the g(2) function,
and not in a usual interferometer.

6.2.3 Intrinsic number of modes

By extension, we will call intrinsic number of modes the dimension of the
vector space generated by all the vectors â`|Ψ〉, or all the matrices â`ρ. An
intrinsic two-mode state vector, like |1, 1〉 for example, can be written, in the
appropriate basis, as |φ12 : v1, v2〉 ⊗ |0, 0...〉, where |φ12 : v1, v2〉 denotes a
two-mode state of the quantum �eld.

6.3 "Distributed Measurement" in a multimode system

6.3.1 Position of the problem

In a single-mode system, classically characterized by a single complex num-
ber, the only quantities that can be measured are "global": they are the total
beam intensity or quadrature values, that are measured by a photodetector

20See R.J. Glauber, Les Houches lectures[14].
21C. Hong, Z. Ou, and L. Mandel, Phys. Rev. Lett. 59 2044 (1987).
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of large area, covering the entire surface where the mode under consideration
has a non-zero amplitude.

A multimode system such as an image is classically characterized by a
great number of complex numbers, and there is a great variety of possible
measurements: one can measure �rst local quantities, such as the intensity
or quadrature in a small region of the image plane. One can also perform
a "distributed measurement" of a physical parameter that modi�es the im-
age at di�erent points. More precisely a distributed measurement is made
by determining a given function of the di�erent local measurements. This
constitutes the very active domain of image processing, with its numerous
applications. To make a distributed measurement, one needs a pixellized
detector such as a CCD camera, interfaced to a computer or to an analog
electronic device which process the data recorded on the photodetector.

6.3.2 Quantum noise in image processing

Quantum �uctuations of light will give rise to �uctuations in the measured
quantity that can be readily calculated. Let us take the example of a lin-
ear image processing. The measured quantity on the computer output is
associated with the operator M̂ given by:

M̂ =
∑

i

giN̂(xi, yi) (194)

where N̂(xi, yi) is the number of photons measured during the exposure time
on the ith pixel centered on point (xi, yi) and gi a positive or negative weight-
ing factor depending on the parameter that one wants to measure. For ex-
ample it is a widely used technique to take a four-pixel, or quadrant detector,
to position the center of a beam of light of any shape. The signal M̂y with g
values g1 = g2 = 1, g3 = g4 = −1 will yield a signal sensitive to the position of
the beam in the Oy direction, whereas the values g1 = g3 = 1, g2 = g4 = −1
will yield a signal M̂x sensitive to the position of the beam in the orthogonal
Ox direction. Another example is the determination of the spatial Fourier
component of wave vector (kx, ky) in the image, using a CCD camera with
millions of pixels and the value gi = cos(kxxi + kyyi) for the gi coe�cients.

Even though measurements in multimode systems may look very compli-
cated, the origin of their quantum �uctuations is very simple. It has been
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shown22 that the quantum �uctuations on M̂ are due to the �uctuations of a
single mode of the �eld vN(x, y), called the noise mode of measurement.

In the case of a measurement of the form (194), the noise mode vN(x, y)
is given by:

vN(x, y) = A
∑

i

gi < Ê(+)(xi, yi) > (195)

where the mean �eld < Ê(+)(xi, yi) > is taken in the quantum state of the
image, and A is a normalizing factor so that

∫
dxdy|vN(x, y)|2 = 1.

In the example of beam positioning of a beam using a quadrant photode-
tector that we have mentioned above, the noise mode on the signal Mx is
the normalized amplitude of the complex electric �eld of the beam itself in
the half plane x > 0, and the opposite of the complex electric �eld ampli-
tude in the half plane x < 0. This odd-looking "�ipped mode" can be easily
generated by inserting a λ/2 phase plate on half of the initial beam.

In order to reduce the quantum �uctuations on a given measurement
below the standard quantum noise limit, it is thus not necessary to squeeze
the intensity noise on all the pixels of the detector, which would require
enormous quantum resources in the case of a Mega-pixel detector. One just
needs to generate a single squeezed state in the noise mode vN associated
with this measurement and to superpose it on the initial image. This scheme
has been already successfully implemented in the case of beam positioning
using a quadrant detector23and has allowed us to position the center of a
TEM00 laser beam within a few Angstroms.

6.3.3 Optimum measurement of a given parameter

Suppose that we have an image that depends in a distributed way on a given
parameter p. For example, a �uorescent nano-object, much smaller that the
light wavelength, positioned at the point (x,y) of some object plane, will give
in the image plane a broad di�raction pattern, the exact shape of which allows
us to know the position of this object with a very high accuracy. Finding the
exact image processing scheme which yields the best possible accuracy of the
position p = (x, y) of this object from the values of the intensities at each

22N. Treps, V. Delaubert, A. Maître, J.M. Courty, C. Fabre Quantum Noise in Multipixel

Image Processing Phys. Rev A71 013820 (2005).
23N. Treps, N. Grosse, C. Fabre, H. Bachor, P.K. Lam, The Quantum Laser Pointer,

Science 301, 940 (2003).
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point of the image plane and in presence of quantum noise is an interesting
optimization problem in image processing at the quantum limit24.

Let us �rst consider the case where the image is in a coherent state, i.e.
when the noise on each pixel is Poissonian (shot noise) and the di�erent
pixels have uncorrelated quantum �uctuations. Using well-known techniques
of signal theory, one can show that an optimized measurement of p is obtained
by a linear image processing protocol of the form (194) with the following
value of the gain coe�cients gi:

gi =
∂

∂p
ln < Ê(+)(xi, yi, p) > (196)

The minimum measurable value of p in presence of shot noise is:

pmin =
p0

2
√
N

;
1

p2
0

=

∫
dxdy

(
∂

∂p
< Ê(+)(xi, yi, p) >

)2

(197)

One can show that this value coincides with the Cramer-Rao bound in pres-
ence of shot noise. As the Cramer-Rao bound[20] gives a lower limit indepen-
dently of the precise information protocol used to extract the information,
we are sure that there exist no procedure that will be able to give a better
signal-to-noise ratio for the measurement of p in the image. But this does
not mean that there are no other procedure allowing us to reach the same
lower limit. It is actually possible to �nd a homodyne technique, using a
local oscillator of appropriate shape, that also reaches the limit pmin given
by (197).

In the example of beam positioning, the quadrant detector technique that
we have brie�y described above using gains ±1 on the four quadrants gives
a standard quantum limit which is 22% above the Cramer Rao bound for
the positioning of a TEM00 laser beam. It is therefore not the optimum
measurement protocol. The Cramer Rao bound is reached when one uses
the optimum gain given by (196), which is gi = xi for a TEM00 beam. The
physical reason of this improvement is that the central part of a TEM00

beam is not useful if one wants to measure a small displacement of the beam,
because it is �at. However, this part of the beam contributes to the noise of
the measurement. The weighting factor gi = xi of the optimum measurement

24V. Delaubert, N. Treps, C. Fabre, H.A. Bachor, P. Réfrégier Quantum limits in image

processing Europhysics Letters 81 44001 (2008).
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removes indeed the contribution of this central part, and improves therefore
the signal to noise ratio of the measurement.

Finally, one can improve further the measurement of the parameter p by
squeezing the noise mode (195), which turns out to be in the case of optimum
beam positioning the Hermite-Gauss mode TEM10.
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