

Optique ondulatoire : Chapitre IV Résonateurs Optiques Pérot-Fabry Lasers

Gérard Rebmann

► To cite this version:

Gérard Rebmann. Optique ondulatoire : Chapitre IV Résonateurs Optiques Pérot-Fabry Lasers. Licence / L3. 2006. sfo-00256988

HAL Id: sfo-00256988 https://hal-sfo.ccsd.cnrs.fr/sfo-00256988v1

Submitted on 4 Sep 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Optique Ondulatoire 2006-07

Chapitre IV

Résonateurs Optiques

Pérot-Fabry

Lasers

 $G. \ Rebmann$

NOTES

1 Interféromètre Fabry-Pérot

1.1 Interférences à ondes multiples

On se propose d'étudier les interférences produites par une lame d'air $(n_2 \simeq 1)$, constituée par deux lames de verre aux surfaces internes traitées. Le traitement consiste à augmenter le coefficient de réflexion des faces internes de la lame d'air.

Figure 1 - PÉROT-FABRY

On ne peut plus se limiter aux deux premiers rayons comme au précédent chapitre car l'augmentation de R impose de les considérer tous.

Avec N = 0 pour le premier rayon transmis, l'amplitude totale transmise s'écrit :

$$E_T = E_o |t|^2 \sum_{N=0}^{\infty} (r_{21})^{2N} e^{iN\varphi}$$

où

$$\varphi = \frac{2\pi}{\lambda} 2e\cos\theta$$

soit

$$E_T = E_o T \sum_{N=0}^{\infty} R^N e^{iN\varphi} = E_o T \frac{1}{1 - Re^{i\varphi}}$$

On se souvient qu'en l'absence d'absorption, avec $R = |r_{12}|^2$ et $T = |t|^2$

R + T = 1

Alors l'éclairement (intensité) s'écrit

$$I \propto |E_T|^2 = I_o \frac{T^2}{(1 - Re^{i\varphi})(1 - Re^{-i\varphi})} = I_o \frac{T^2}{1 - 2R\cos\varphi + R^2}$$

expression dont le dénominateur peut se récrire :

$$1 - 2R\cos\varphi + R^2 = 1 - 2R + R^2 + 2R - 2R\cos\varphi = (1 - R)^2 + 2R(1 - \cos\varphi) = (1 - R)^2 + 4R\sin^2\frac{\varphi}{2}$$

Ainsi

$$I = I_o \frac{(1-R)^2}{(1-R)^2 + 4R\sin^2\frac{\varphi}{2}} = I_o \frac{1}{1+m\sin^2\frac{\varphi}{2}}$$

où

$$m = \frac{4R}{(1-R)^2}$$

 $G. \ Rebmann$

Figure 2 - Intensité des anneaux

La largeur $\Delta \varphi$ à mi-hauteur est telle que $I = \frac{I_M}{2}$, donc pour $\varphi_L = \varphi_M + \Delta \varphi/2$ on a

$$\frac{1}{1+msin^2\varphi_{\rm \tiny L}/2}=\frac{1}{2}$$

d'où

$$\sin^2 \varphi_{\rm L}/2 = \frac{1}{m}$$

La fonction étant périodique, pour $p=0,\,\varphi_{\scriptscriptstyle L}=\Delta\varphi/2$ et

$$\sin\frac{\Delta\varphi}{4} = \frac{1}{\sqrt{m}}$$

or m >> 1 (par ex. $R = 0.95 \Rightarrow m = 1520$) d'où la largeur à mi-hauteur :

$$\Delta \varphi \simeq \frac{4}{\sqrt{m}} = \frac{2(1-R)}{\sqrt{R}}$$

1.2Finesse et Contraste du Fabry-Pérot

On définit la finesse comme le rapport de l'intervalle entre les pics et la largeur d'un pic :

$$F = \frac{p\acute{e}riode}{largeur} = \frac{2\pi}{\Delta\varphi} = \frac{\pi}{2}\sqrt{m}$$

Soit une finesse :

$$F = \pi \frac{\sqrt{R}}{1 - R}$$

La finesse F est d'autant plus grande que les pics sont étroits (ex. $R = 0.95 \Rightarrow F = 61$).

Figure 3 - Aspects de l'intensité versus φ pour plusieurs R

Le minimum diminue comme $\frac{1}{1+m}$ et le contraste augmente avec m.

$$C = \frac{I_M - I_m}{I_M + I_m} = \frac{1 - \frac{1}{1 + m}}{1 + \frac{1}{1 + m}} = \frac{1 + m - 1}{1 + m + 1} = \frac{m}{2 + m} = \frac{1}{1 + \frac{2}{m}}$$

On obtient finalement :

$$C = \frac{1}{1 + \frac{\pi^2}{2F^2}}$$

Remarque :

Si R est obtenu par le dépôt d'une couche métallique, alors il y a absorption et déphasage aux réflexions : $\varphi = \frac{2\pi}{\lambda} 2e \cos \theta + 2\varphi_R$ où φ_R est introduit par chaque réflexion interne. En pratique, l'ordre d'interférences $p = qlq \ 10^5$ et le terme $2\varphi_R$ est négligeable devant $\frac{4\pi e}{\lambda}$. Toutefois en présence d'absorption,

$$R + T + A = 1$$

et

$$\frac{T^2}{(1-R)^2} = (1 - \frac{A}{1-R})^2$$

Ainsi :

$$I = I_o \left(1 - \frac{A}{1 - R}\right)^2 \frac{1}{1 + m \sin^2 \varphi/2}$$

"Tout se passe comme si" I_o était plus faible mais les variations relatives, donc le contraste ne sont pas affectés et on a toujours même contraste et même finesse :

$$F = \frac{\pi\sqrt{R}}{1-R} \quad et \quad C = \frac{1}{1+\frac{\pi^2}{2F^2}}$$

1.3 Observation entre lentilles - Rayon des anneaux

Un Fabry-Pérot placé entre lentilles convergentes, éclairé en source étendue (pour avoir plusieurs incidences) permet d'observer en transmission des anneaux clairs de grande finesse sur un fond sombre.

Figure 4 - Observation entre lentilles

Les rayons des anneaux brillants sont donnés par la même expression que celle obtenue avec les interférences à deux ondes :

$$\theta_p = \sqrt{\frac{\lambda}{e}(p_o - p)}$$

 et

$$R_p = f\theta_p = f\sqrt{\frac{\lambda}{e}(p_o - p)}$$

où f est la focale de la lentille d'observation et $p_o \simeq \frac{2e}{\lambda}$ (si on néglige l'effet des réflexions sur la phase).

1.4 Cavité Fabry-Pérot analyseur de fréquences

Lorsqu'on fait varier l'épaisseur du Fabry-Pérot éclairé en incidence normale, la différence de marche $\delta = 2e$ varie et on observe un maximum lorsque

$$\delta = p\lambda \; ; \; p \in \mathbb{N}$$

Une représentation graphique $\delta_p(\lambda)$ est constituée par un réseau de droites de pentes p passant par l'origine. Une telle cavité, utilisée en analyseur de spectre a une épaisseur typique de plusieurs centimètres $\delta \simeq 10 cm$ et $\lambda \simeq 0.5 \mu m$ de sorte que $p \simeq 200\ 000$.

Figure 5 - $\delta(\lambda)$ pour la cavité F-P

• On éclaire en monochromatique λ_1 , on observe des pics pour :

$$\delta_1 = p\lambda_1, \, \delta_2 = (p+1)\lambda_1, \, \text{etc.}$$

• On éclaire avec plusieurs longueurs d'onde, alors si λ_2 est telle que $\delta_2 = p\lambda_2 = (p+1)\lambda_1$, il y a coïncidence des deux réseaux autour de δ_1 et on peut en déduire que :

$$\lambda_2 = \frac{p+1}{p}\lambda_1$$

Ainsi :

$$\lambda_2 - \lambda_1 = (\frac{p+1}{p} - 1)\lambda_1 = \frac{\lambda_1}{p}$$

Comme il y a proportionnalité entre les λ et les δ , pour tout λ' comprise entre λ_1 et λ_2 , on n'observera qu'un seul pic entre δ_1 et δ_2 . Si on retraduit cela en fréquences,

$$\lambda_2 - \lambda_1 = \frac{\lambda_1}{p} = \frac{\lambda_1 \lambda_2}{2e}$$

devient :

$$c\left(\frac{1}{\nu_2} - \frac{1}{\nu_1}\right) = \frac{c^2}{2e\,\nu_1\nu_2}$$

d'où

$$\nu_1 - \nu_2 = \frac{c}{2e}$$

où $\nu_2 < \nu_1$. On note l'intervalle $\Delta \nu_L$:

$$\Delta \nu_L = \frac{c}{2e}$$

<u>Définition</u> : $\Delta \nu_L$ intervalle de fréquences maximum à l'intérieur duquel on n'observe qu'un seul pic pour une fréquence donnée s'appelle l'**intervalle spectral libre** (ISL).

La proportionnalité des δ et des λ , conduit en terme de fréquences, si on se souvient que $\frac{d\lambda}{\lambda} = -\frac{d\nu}{\nu}$ à

$$\frac{\nu\,'-\nu_1}{\Delta\nu_L}=-\,\frac{\delta'-\delta_1}{\Delta\delta}$$

où on a posé $\Delta \delta = \delta_2 - \delta_1$.

Ainsi, sur l'intervalle spectral libre, on peut mesurer un écart de fréquence, il est proportionnel à l'écart en δ :

$$\nu' - \nu_1 = -\Delta\nu_L \,\frac{\delta' - \delta_1}{\Delta\delta}$$

Noter le signe moins : ν décroît lorsque δ augmente.

2 Oscillateurs optiques-LASER

2.1 Introduction

On appelle "laser" toute source lumineuse basée sur l'effet LASER (Light Amplification by Stimulated Emission Radiation). Ce sont en effet des oscillateurs optiques basés sur l'amplification d'un signal lumineux "bouclé" sur lui-même. Comme en électronique, il y a oscillation -on dit parfois accrochage- lorsque le système "fournit" plus d'énergie qu'il n'en reçoit sous une forme particulière, c'est une façon de parler, il y a en fait transformation d'énergie. Un exemple d'oscillation acoustique bien connu est l'effet LARSEN qui se produit lorsqu'un haut-parleur est dirigé vers le micro et que le gain de la chaîne d'amplification est assez élevé. On retrouve les éléments caractéristiques de l'oscillation : gain et bouclage du signal. Dans le cas des oscillateurs optiques, le bouclage est réalisé par une cavité Fabry-Pérot qui "replie" le faisceau sur lui-même et il reste à étudier comment obtenir le gain qui dans le cas des Lasers est produit par l'émission stimulée. Pour aborder cette dernière notion on va tout d'abord revenir sur l'interaction rayonnement-matière.

2.2 Interaction rayonnement-matière

On se limitera à un modèle à deux niveaux $(E_1 \text{ et } E_2)$ impliqués dans l'interaction directe.

2.2.1 Processus d'interaction

Schématiquement on peut distinguer différents processus :

Figure 6 - Interaction rayonnement-matière

• L'émission spontanée : isotrope, elle fournit des photons d'énergie $h\nu = E_2 - E_1$ incohérents entre eux.

Si N_1 et N_2 sont des nombres d'états occupés par unité de volume des états E_1 et E_2 :

$$\frac{dN_1}{dt} = -\frac{dN_2}{dt} = \frac{N_2}{\tau_{sp}} = AN_2$$

où A est la probabilité de transition et τ_{sp} caractérise la transition spontanée.

• L'absorption : les variations de populations dépendent du nombre de photons présents dans le volume, nombre proportionnel à la densité spectrale volumique en énergie : toute l'énergie qui arrive en une seconde sur une surface unité est contenue dans un cylindre de section droite d'aire unité et de longueur $v_{\varphi} = c/n$:

$$J(\nu)d\nu = \frac{c}{n}\rho_{\nu}d\nu$$

Dans la limite des faibles flux de photons, les taux de variations des densités de population s'écrivent : $\frac{dN_2}{dN_1} = \frac{dN_1}{D} = N_1$

$$\frac{dN_2}{dt} = -\frac{dN_1}{dt} = B_{12}\rho_\nu N_1$$

• L'émission stimulée : les atomes dans le niveau E_2 sont "incités" à passer dans le niveau E_1 par le flux de photons.

$$\frac{dN_1}{dt} = -\frac{dN_2}{dt} = B_{21}\rho_{\nu}N_2$$

Il y a production de photons d'énergie $h\nu$, en phase avec les photons incidents : la production est cohérente.

2.2.2 Argument d'EINSTEIN(1917)

À l'équilibre thermodynamique, on connaît la densité spectrale volumique d'un corps noir (loi de Planck) :

$$\rho_{\nu_{|eq}} = \frac{8\pi h\nu^3}{c^3} \; \frac{1}{e^{h\nu/kT} - 1}$$

Si on écrit l'équilibre pour les niveaux E_1 E_2 , c'est à dire qu'il y a "autant de montées que de descentes" :

$$B_{12}\rho_{\nu}N_1 = B_{21}\rho_{\nu}N_2 + AN_2$$

expression, qui si on tient compte de l'équilibre des populations par la loi de BOLTZMANN :

$$\frac{N_2}{N_1} = \exp(-\frac{h\nu}{kT})$$

mène à :

$$\rho_{\nu} = \frac{A/B_{21}}{\frac{B_{12}}{B_{21}}e^{h\nu/kT} - 1}$$

qui ne peut s'accorder avec le résultat de la loi de Planck qu'à condition d'avoir $B_{12} = B_{21}$ et

$$\frac{A}{B_{21}} = \frac{8\pi h\nu^3}{c^3}$$

expressions qui nécessitent l'existence du coefficient B_{21} et ont mené A. Einstein à postuler l'existence du processus associé à B_{21} : l'émission stimulée.

$\{\mathfrak{H}\}$ De la découverte théorique à l'invention :

• 1917 Publication d'EINSTEIN

• 1928 Mise en évidence de l'émission stimulée (preuve indirecte) par LADENBOURG et KOPFERMAN

• 1949 Réalisation du pompage optique KASTLER- prix Nobel en 1966

On n'imagine pas à l'époque comment inverser la population qui à l'équilibre thermique pour 2000K est telle que $N_1/N_2 \simeq 1.5 \times 10^5$. On ne voit donc pas d'application envisageable!

• 1954 Premier MASER à ammoniac (M pour micro-waves) par TOWNES-GORDON-ZEIGER, ils ont pensé à la cavité résonnante.

• 1960 Premier laser à rubis MAIMAN

2.2.3 Point de vue semi-classique, retour sur la polarisabilité atomique

On a obtenu, au chap. I, pour la susceptibilité d'un milieu dilué, un résultat lié à la polarisabilité des atomes placés dans le rayonnement électromagnétique :

$$\chi_e = \frac{2N}{\varepsilon_o \hbar} \sum_n \frac{\omega_{on}| < n |\hat{D}_{on}^{\epsilon}| 0 > |^2}{\omega_{on}^2 - \omega^2 - i\omega/\tau_n}$$

Si on ne s'intéresse maintenant qu'aux deux niveaux (1 et 2), dans la zone de la transition $(\omega \simeq \omega_o)$ et dans ces conditions, le nombre d'atomes susceptibles de transiter étant $N = N_1 - N_2$, on peut écrire :

$$\chi_e = \frac{2(N_1 - N_2)}{\varepsilon_o \hbar} |D_{12}^{\epsilon}|^2 \frac{\omega_o}{\omega_o^2 - \omega^2 - i\omega/\tau_n}$$

en tenant compte du fait que $\omega_o + \omega \simeq 2\omega_o$, on simplifie la fraction complexe

$$\frac{\omega_o}{\omega_o^2 - \omega^2 - i\omega/\tau_n} = \frac{\omega_o}{(\omega_o - \omega)(\omega_o + \omega) - i\omega_o/\tau_n} \simeq \frac{1/2}{(\omega_o - \omega) - i\Gamma}$$

où

$$\Gamma = \frac{\omega}{2\omega_o\tau} \simeq \frac{1}{2\tau}$$

et en décomposant en partie réelle et imaginaire, on obtient :

$$\Re e[\chi_e] = \chi'_e = \frac{(N_1 - N_2)}{\varepsilon_o \hbar} |D_{12}^{\epsilon}|^2 \frac{\omega_o - \omega}{(\omega_o - \omega)^2 + \Gamma^2}$$

G. Rebmann

 et

$$\Im m[\chi_e] = \chi''_e = \frac{(N_1 - N_2)}{\varepsilon_o \hbar} |D_{12}^{\epsilon}|^2 \frac{\Gamma}{(\omega_o - \omega)^2 + \Gamma^2}$$

or $\varepsilon_r=1+\chi_e'+i\chi_e''$ contribue à un indice complexe : $n=n_{\scriptscriptstyle R}+in_{\scriptscriptstyle I}.$ Alors une onde plane s'écrit :

$$e^{i(nkz-\omega t)} = e^{i(n_Rkz-\omega t)}e^{-n_Ikz}$$

dont le dernier facteur représente un terme d'absorption. On conçoit alors que si on change le signe de χ_e'' , on obtient un gain. C'est possible si on parvient à "inverser la population" : $N_2 > N_1$. On a établi que l'émission stimulée (ou induite) apportait un gain optique à condition d'inverser la population.

2.3 Conditions de fonctionnement d'un laser

L'inversion de population peut se faire de différentes façons, en continu ou en pulsé :

• par des collisions inélastiques dans une décharge électrique (plasma chauffé)

• par injection de porteurs dans les bandes supérieures d'un semi-conducteur

• par pompage optique : illumination intense sur des transitions peuplant le niveau E_2 . Nous allons nous intéresser au pompage optique

2.3.1 Inversion de population par pompage optique

Ce processus est impossible avec seulement 2 niveaux : en effet :

$$\frac{dN_2}{dt} = (B_{12}N_1 - B_{21}N_2)\rho_\nu - AN_2$$

si $\rho_{\nu} = 0$ alors $N_1 = N$; $N_2 = 0$. ρ_{ν} représente la densité spectrale volumique. On pose $\Delta N = (N_1 - N_2)$ et $N = N_1 + N_2$. À saturation, $\frac{dN_2}{dt} = 0$ donne avec $B_{12} = B_{21}$:

$$0 = B\Delta N\rho_{\nu} - A\frac{N - \Delta N}{2}$$

d'où

$$\Delta N = \frac{N}{1 + \frac{2B\rho_{\nu}}{A}}$$

qui tend vers 0 lorsque ρ_{ν} tend vers l'infini. Ainsi on ne parvient au mieux qu'à équilibrer les populations $N_1 = N_2$ et pas à l'inversion. Or la cavité présente des pertes qu'il faut compenser et il faut en fait obtenir au moins un ΔN critique : $\Delta N > \Delta N_c > 0$.

L'inversion est possible en continu à 3 ou 4 niveaux :

Figure 7 - Processus à 3 ou 4 niveaux

La transition τ_{nr} est non radiative avec $\tau_{nr} \ll \tau_{21}$, les transitions $E_3 \rightarrow E_2$ et $E_1 \rightarrow E_o$ sont non radiatives et leurs temps caractéristiques sont beaucoup plus courts que celui de la transition optique.

Si on compare les énergies de pompage nécessaires à l'inversion, on démontre que le processus à 4 niveaux est plus favorable de plusieurs ordre de grandeur :

$$\frac{P(4)}{P(3)} = \frac{2}{N}\Delta N_c$$

Dans tous les cas il faut obtenir une inversion suffisante $\Delta N_c > 0$ avant d'obtenir l'émission stimulée (effet LASER). Quelque soit le procédé, cela prend un certain temps : un laser "chauffe" avant de "laser". Ce retard correspond au temps nécessaire à obtenir l'inversion.

2.3.2 Condition d'oscillation et profils de raies

Pour qu'il y ait oscillation, il faut qu'après un aller-retour, le signal soit plus grand qu'au départ (au moins égal). Toutes les pertes sont à considérer : absorption dans la cavité, et pertes par transmission aux miroirs, y compris celle essentielle qui fournit le signal qui sort de la cavité!

Soit G le gain du milieu actif et η les pertes sur un aller-retour : $I_2 = I_1 G(1 - \eta)$ La condition s'écrit donc :

$$\boxed{G(1-\eta) \ge 1}$$

Si on exprime que G est obtenu par la traversée d'un milieu de longueur l dans la cavité :

$$g \propto (N_2 - N_1) |D|^2 f(\omega)$$

 $G = e^{2gl}$

avec

où

$$f(\omega) = \frac{2}{\pi \Delta \omega} \frac{1}{1 + (\frac{\omega - \omega_o}{\Delta \omega/2})^2}$$

Figure 8 - Profil lorentzien

Les gains g, donc G dépendent de la fréquence, la largeur théorique est donnée par l'émission spontanée $\Delta \omega = \frac{1}{\tau_{sp}}$ avec typiquement $\Delta \nu \simeq 10 \text{ MHz}$. Cette largeur est susceptible d'être augmentée par les conditions du pompage :

Élargissement homogène

Tous les atomes subissent le même processus (notament des collisions) qui diminue le temps caractéristique initial $\tau < \tau_{sp}$. On obtient encore une lorentzienne avec un $\Delta \omega$ plus grand : $\Delta \nu \simeq 100$ MHz.

Élargissement inhomogène

Les atomes subissent des processus différents comme par exemple lorsqu'ils ont des vitesses différentes dans un plasma. L'effet DOPPLER change la fréquence de l'onde émise par l'atome en mouvement :

$$\nu = \nu_o (1 + \frac{V_z}{c})$$

où V_z est la composante de vitesse dans la direction de l'observateur.

Figure 9 - Profil gaussien

 $G=e^{2gl}$

La répartition statistique des vitesses mène à une gaussienne par convolution des lorenziennes plus étroites avec la distribution des vitesses.

$$f(\omega) = \frac{1}{\Delta\omega} \sqrt{\frac{Ln2}{\pi}} \exp{-(\frac{\omega - \omega_o}{\Delta\omega/2})^2}$$

Dans un résonateur optique (F-P), seuls certains modes sont présents, distants en fréquence de c/2el'intervalle spectral libre et seuls ceux tels que $q > \alpha$

donnent du rayonnement. Ainsi pour un HeNe avec les valeurs d'élargissement précédentes, on peut typique-

 $\Delta \nu \sim \frac{c}{2e} \times \frac{1}{F} = \frac{c}{2e} \frac{1-R}{\pi \sqrt{R}}$

ment trouver 3 modes longitudinaux.

La largeur d'un mode est

Pour un plasma à 300 K, $\Delta \nu \simeq 1400 \text{ MHz}$.

2.3.3 Modes laser

Si le milieu actif s'étend dans toute la cavité, le gain peut s'écrire $G = e^{2eg}$ et les pertes peuvent aussi se répartir sur la longueur d'un aller-retour : 2e. Le signal est ainsi multiplié par $1 - \eta = e^{-2\alpha e}$ et la condition d'oscillation $G(1 - \eta) \ge 1$ s'écrit encore : $e^{2(g - \alpha)e} \ge 1$ ce qui revient à $g \ge \alpha$.

Modes longitudinaux

Figure 10 - Modes longitudinaux

Modes transverses

- cavité plan-plan (peu stable, peu employée)

$$k^{2} = k_{x}^{2} + k_{y}^{2} + k_{z}^{2} = \pi^{2} \left(\frac{m^{2}}{4a^{2}} + \frac{n^{2}}{4a^{2}} + \frac{p^{2}}{e^{2}}\right)$$

pour une cavité $2a \times 2a \times e$, où a mesure qlq mm et e est de l'ordre du m. On déduit

$$\nu_{mnp} = \frac{c}{2} \left[\frac{p^2}{e^2} + \frac{m^2 + n^2}{4a^2} \right]^{1/2}$$

 et

$$\nu_{m0p} - \nu_{00p} \simeq \frac{c}{16} \frac{e}{a^2} \frac{m^2}{p}$$

qui mène pour m = 1 à :

$$\nu_{10p} - \nu_{00p} \simeq \frac{c}{2e} \frac{e^2}{8p a^2} = \Delta \nu_L \frac{\lambda e}{16a^2}$$

valeur qui peut être de l'ordre de l'ISL $\Delta \nu_L$ ou d'une fraction d'ISL.

- cavité confocale (.) constituée de deux miroirs sphériques de foyer commun, les solutions de l'équation d'onde sont des solutions à symétrie cylindrique du type des faisceaux gaussiens rencontrés au Chap. I.

On admettra, pour des rayons égaux des miroirs, la répartition modale suivante :

$$\nu_{mnp} = \frac{c}{2e} \left(p + \frac{1+m+n}{2} \right)$$

qui mène à un écart au mode longitudinal :

$$\nu_{10p} - \nu_{00p} = \frac{1}{2}\Delta\nu_L$$

Les modes transverses se placent entre les modes longitudinaux, ils traduisent la géométrie suivante où le parcours est de 4e dans la cavité en présence de composante transverse. Un diaphragme bien placé peut éliminer les modes transverses (fonctionnement monomode).

Figure 11 - Modes laser

2.3.4 Régimes continus ou pulsés

Les lasers peuvent fonctionner en régime continu ou impulsionnel, dans ce dernier cas les phases d'inversion de population puis d'émission laser sont successives. On obtient des puissances crêtes considérables (TW= 10^{12} W) pendant des temps très courts (ps= 10^{-12} s à fs= 10^{-15} s). Le taux de répétition, nombre de coups par seconde est alors une caractéristique importante.

Les applications sont nombreuses : télécommunications, lecteur CD-DVD, télémétrie, usinage, découpe, chirurgie (notamment ophtalmique), etc.

3 Autres oscillateurs optiques

3.1 Laser à électrons libres (LEL)

Le laser à électron libre ou FEL (free electron laser), malgré son nom, n'est pas à proprement parler un laser dans la mesure où il ne met pas en cause l'émission stimulée. L'émission électromagnétique est produite par le passage d'un faisceau d'électrons relativistes dans un "onduleur", assemblage de pôles d'aimants placés "tête-bêche", alternativement nord et sud. Les électrons sont accélérés par le champ magnétique vers le haut puis vers le bas et comme toute charge accélérée rayonne, on a une source de rayonnement électromagnétique.

Figure 12 - "Laser" à électrons libres

Si on a pris soin de placer l'onduleur à l'intérieur d'un cavité optique, et a condition de synchroniser les paquets d'électrons avec les aller-retours du faisceau, on obtient un oscillateur optique qui n'est lié à aucune contrainte de milieu ou de transition optique. Toutefois la mise en œuvre n'est pas spécialement aisée quand il faut accélérer les électrons sous plusieurs centaines de MeV voire quelques GeV, guider les électrons dans le vide (par champ magnétique) et synchroniser les paquets avec l'OEM de la cavité optique. Il n'existe aujourd'hui qu'une trentaine de réalisations au monde mais de nombreux projets (cf. G. Ramian - http://sbfel3.ucsb.edu/www/).

3.2 Oscillateurs paramétriques optiques - OPO

Un cristal non-linéaire soumis à un rayonnement (ω_o, \vec{k}_o) est susceptible dans certaines conditions d'orientation et/ou de température, (accord de phase) d'émettre des rayonnements ω_1 et ω_2 tels que

 et

$$\vec{k}_o = \vec{k}_1 + \vec{k}_2$$

 $\omega_o = \omega_1 + \omega_2$

Si on place un tel cristal dans une cavité optique, et qu'on l'éclaire avec un puissant faisceau laser dit de pompe à ω_o , on pourra faire résonner la cavité sur un ou plusieurs des rayonnements produits et sélectionner celui qu'on désire.

$$\begin{array}{ccc}
\hbar\omega_{o} \\
\hbar\omega_{o} \\
\hbar\omega_{-} \\
\hbar\omega_{1}
\end{array}$$

$$\begin{array}{ccc}
\hbar\omega_{2} \\
\hbar\omega_{2} \\
\hbar\omega_{1}
\end{array}$$

$$\begin{array}{ccc}
\hbariltre \\
\hbar\omega_{1} \\
\hbar\omega_{1}
\end{array}$$

Figure 13 - Oscillateur paramétrique optique

Le choix de valeurs des paramètres (orientation, température, contraintes) permet de choisir la fréquence des ondes produites puis on filtre en sortie les ondes indésirables. Un OPO fournit ainsi un rayonnement aussi cohérent que celui d'un laser qui est, de plus, accordable dans toute une gamme de fréquences.