A coupled fluid-dynamics-heat transfer model for 3D simulations of the aqueous humor flow in the human eye - Université de Paris - Faculté des Sciences Access content directly
Conference Papers Year : 2024

A coupled fluid-dynamics-heat transfer model for 3D simulations of the aqueous humor flow in the human eye

Abstract

Understanding human eye behavior involves intricate interactions between physical phenomena such as heat transfer and fluid dynamics. Accurate computational models are vital for comprehending ocular diseases and therapeutic interventions. This work focuses on modeling and simulating aqueous humor flow in the anterior and posterior chambers of the eye, coupled with overall heat transfer. Aqueous humor dynamics regulates intraocular pressure, crucial for understanding conditions like glaucoma. Convective effects from temperature disparities also influence this flow. Extending prior research, this work develops a comprehensive three-dimensional computational model to simulate coupled fluid-dynamic-heat transfer model, thus contributing to the understanding of ocular physiology.
Fichier principal
Vignette du fichier
CMBE24Abstract.pdf (2.53 Mo) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04558924 , version 1 (26-04-2024)

Identifiers

  • HAL Id : hal-04558924 , version 1

Cite

Thomas Saigre, Christophe Prud'Homme, Marcela Szopos, Vincent Chabannes. A coupled fluid-dynamics-heat transfer model for 3D simulations of the aqueous humor flow in the human eye. CMBE24, Jun 2024, Arlington (Virginia), United States. ⟨hal-04558924⟩
23 View
1 Download

Share

Gmail Mastodon Facebook X LinkedIn More